1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
//! # Erdős-Rényi with constant number of edges
//! * Draw from an Erdős-Rényi graph ensemble
//! * In this model, all possible edges are equally likely
//! * The number of edges is fixed
//!
//! # Citations
//! > P. Erdős and A. Rényi, "On the evolution of random graphs,"
//!   Publ. Math. Inst. Hungar. Acad. Sci. **5**, 17-61 (1960)
//!
use {
    crate::{graph::*, iter::*, traits::*},
    std::{borrow::Borrow, convert::AsRef, io::Write},
    rand::seq::SliceRandom
};

#[cfg(feature = "serde_support")]
use serde::{Serialize, Deserialize};

/// Storing the information about which edges were deleted or added
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct ErStepM{
    /// removed edge
    pub(crate) removed: (usize, usize),
    pub(crate) i_removed: usize,
    pub(crate) inserted: (usize, usize),
    pub(crate) i_inserted: usize,
}

impl ErStepM{
    #[allow(unused)]
    fn invert(&mut self){
        std::mem::swap(
            &mut self.removed,
            &mut self.inserted
        );
    }

    fn inverted(&self) -> Self{
        Self{
            removed: self.inserted,
            inserted: self.removed,
            i_inserted: self.i_inserted,
            i_removed: self.i_removed,
        }
    }
}

/// # Implements Erdős-Rényi graph ensemble
/// Constant number of edges
/// * **Note** simple sampling of this ensemble is somewhat inefficient right now -
///   I might change it in the future, though that will change the results of the simple sampling
///   (Not on average of cause)
/// * for *simple sampling* look at [```SimpleSample``` trait](./sampling/traits/trait.SimpleSample.html)
/// * for *markov steps* look at [```MarkovChain``` trait](../sampling/traits/trait.MarkovChain.html)
/// ## Other
/// * for topology functions look at [`GenericGraph`](../generic_graph/struct.GenericGraph.html)
/// * to access underlying topology or manipulate additional data look at [```WithGraph``` trait](../traits/trait.WithGraph.html)
/// * to use or swap the random number generator, look at [```HasRng``` trait](../traits/trait.HasRng.html)
///
/// # Save and load example
/// * only works if feature ```"serde_support"``` is enabled
/// * Note: ```"serde_support"``` is enabled by default
/// * I need the ```#[cfg(feature = "serde_support")]``` to ensure the example does compile if
/// * you can do not have to use ```serde_json```, look [here](https://docs.serde.rs/serde/) for more info
///  you opt out of the default feature
/// ```
/// use net_ensembles::traits::*; // I recommend always using this
/// use serde_json;
/// use rand_pcg::Pcg64;
/// use net_ensembles::{ErEnsembleM, EmptyNode, rand::SeedableRng};
/// use std::fs::File;
/// use std::io::{BufWriter, BufReader};
///
/// let rng = Pcg64::seed_from_u64(95);
/// // create Erdős-Rényi ensemble with 200 vertices and 600 edges
/// let er_ensemble = ErEnsembleM::<EmptyNode, Pcg64>::new(200, 600, rng);
///
/// #[cfg(feature = "serde_support")]
/// {
///     // storing the ensemble in a file:
///
///     let er_m_file = File::create("store_ER_m.dat")
///           .expect("Unable to create file");
///     let buf_writer = BufWriter::new(er_m_file);
///
///     // or serde_json::to_writer(buf_writer, &er_ensemble);
///     serde_json::to_writer_pretty(buf_writer, &er_ensemble);
///
///     // loading ensemble from file:
///
///     let read = File::open("store_ER_m.dat")
///         .expect("Unable to open file");
///     let mut buf_reader = BufReader::new(read); 
///
///     let er: ErEnsembleM::<EmptyNode, Pcg64> = serde_json::from_reader(buf_reader).unwrap();
/// }
///
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct ErEnsembleM<T: Node, R>
{
    graph: Graph<T>,
    m: usize,
    rng: R,
    all_edges: Vec<(usize, usize)>,
    possible_edges: Vec<(usize, usize)>,
    current_edges: Vec<(usize, usize)>,
}


impl<T, R> AsRef<Graph<T>> for ErEnsembleM<T, R>
where T: Node,
      R: rand::Rng
{
    #[inline]
    fn as_ref(&self) -> &Graph<T>{
        &self.graph
    }
}

impl<T, R> Borrow<Graph<T>> for ErEnsembleM<T, R>
where T: Node,
      R: rand::Rng
{
    #[inline]
    fn borrow(&self) -> &Graph<T> {
        &self.graph
    }
}

impl<T, R> HasRng<R> for ErEnsembleM<T, R>
    where   T: Node,
            R: rand::Rng,
{
    /// # Access RNG
    /// If, for some reason, you want access to the internal random number generator: Here you go
    fn rng(&mut self) -> &mut R {
        &mut self.rng
    }

    /// # Swap random number generator
    /// * returns old internal rng
    fn swap_rng(&mut self, rng: &mut R) {
        std::mem::swap(&mut self.rng, rng);
    }
}

impl<T, R> SimpleSample for ErEnsembleM<T, R>
    where   T: Node + SerdeStateConform,
            R: rand::Rng,
{
    /// # Randomizes self according to  model
    /// * this is intended for creation of initial sample
    /// * used in [`simple_sample`](#method.simple_sample)
    /// and [`simple_sample_vec`](#method.simple_sample_vec)
    fn randomize(&mut self){
        self.graph.clear_edges();

        self.shuffle_all_edges();

        // uses mem-copy
        self.current_edges
            .copy_from_slice(&self.all_edges[..self.m]);

        for edge in self.current_edges.iter()
        {
            self.graph
                .add_edge(edge.0, edge.1)
                .unwrap();
        }

        // uses mem-copy
        self.possible_edges
            .copy_from_slice(&self.all_edges[self.m..]);
    }
}

impl <T, R> MarkovChain<ErStepM, ErStepM> for ErEnsembleM<T, R>
    where   T: Node + SerdeStateConform,
            R: rand::Rng,
{
    /// * undo a markov step, return result-state
    /// * if you want to undo more than one step
    /// see [`undo_steps`](#method.undo_steps)
    fn undo_step(&mut self, step: &ErStepM) -> ErStepM {
        let step = step.inverted();
        self.step(&step);
        step
    }

    /// * undo a markov step, **panic** on invalid result state
    /// * for undoing multiple steps see [`undo_steps_quiet`](#method.undo_steps_quiet)
    fn undo_step_quiet(&mut self, step: &ErStepM) {
        let step = step.inverted();
        self.step(&step);
    }

    /// # Markov step
    /// * use this to perform a markov step
    /// * for doing multiple mc steps at once, use [`m_steps`](#method.m_steps)
    fn m_step(&mut self) -> ErStepM{
        let index_current   = self.rng.gen_range(0..self.current_edges.len());
        let index_possible  = self.rng.gen_range(0..self.possible_edges.len());

        let step = ErStepM{
            removed:  self.current_edges[index_current],
            i_removed: index_current,
            inserted: self.possible_edges[index_possible],
            i_inserted: index_possible
        };

        self.step(&step);

        step
    }
}

impl<T, R> ErEnsembleM<T, R>
where T: Node + SerdeStateConform,
      R: rand::Rng
{
    fn step(&mut self, step: &ErStepM){
        self.graph
            .remove_edge(step.removed.0, step.removed.1)
            .unwrap();

        self.graph
            .add_edge(step.inserted.0, step.inserted.1)
            .unwrap();

        std::mem::swap(
            &mut self.current_edges[step.i_removed],
            &mut self.possible_edges[step.i_inserted]
        );
    }
    
    /// # Initialize
    /// create new ErEnsembleM graph with:
    /// * `n` vertices
    /// * `m` edges
    /// * `rng` is consumed and used as random number generator in the following
    /// * internally uses `Graph<T>::new(n)`
    /// * generates random edges according to ER model
    pub fn new(n: usize, m: usize, rng: R) -> Self {
        let graph: Graph<T> = Graph::new(n);

        let p_edges = (n * (n - 1)) / 2;

        // panic, if you try to create a graph with to many edges
        assert!(
            m <= p_edges,
            "A complete graph with {} vertices has {} edges. \
             You requested {} edges, i.e., to many. Panic at function `new` of struct {}",
            n,
            p_edges,
            m,
            std::any::type_name::<Self>()
        );

        let mut vec = Vec::with_capacity(p_edges);
        for i in 0..n {
            for j in i+1..n {
                vec.push((i, j));
            }
        }

        let mut e = ErEnsembleM {
            graph,
            m,
            rng,
            all_edges: vec,
            possible_edges: vec![(0, 0); p_edges - m],   // randomize will mem_copy - slice needs to be big enough
            current_edges: vec![(0, 0); m], // randomize will mem_copy - slice needs to be big enough
        };
        e.randomize();
        e
    }

    fn graph_mut(&mut self) -> &mut Graph<T> {
        &mut self.graph
    }

    /// Return total number of edges
    pub fn get_m(&self) -> usize {
        self.m
    }

    fn shuffle_all_edges(&mut self) {
        self.all_edges
            .shuffle(&mut self.rng);
    }

}

impl<T, R> GraphIteratorsMut<T, Graph<T>, NodeContainer<T>> for ErEnsembleM<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
{
    fn contained_iter_neighbors_mut(&mut self, index: usize) ->
        NContainedIterMut<T, NodeContainer<T>, IterWrapper>
    {
        self.graph.contained_iter_neighbors_mut(index)
    }

    fn contained_iter_neighbors_mut_with_index(&mut self, index: usize)
        -> INContainedIterMut<'_, T, NodeContainer<T>>
    {
        self.graph.contained_iter_neighbors_mut_with_index(index)
    }

    fn contained_iter_mut(&mut self) ->  ContainedIterMut<T, NodeContainer<T>> {
        self.graph.contained_iter_mut()
    }
}

impl<T, R> WithGraph<T, Graph<T>> for ErEnsembleM<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
{
    fn at(&self, index: usize) -> &T{
        self.graph.at(index)
    }

    fn at_mut(&mut self, index: usize) -> &mut T{
        self.graph.at_mut(index)
    }

    fn graph(&self) -> &Graph<T> {
        self.borrow()
    }

    /// # Sort adjecency lists
    /// If you depend on the order of the adjecency lists, you can sort them
    /// # Performance
    /// * internally uses [pattern-defeating quicksort](https://github.com/orlp/pdqsort)
    /// as long as that is the standard
    /// * sorts an adjecency list with length `d` in worst-case: `O(d log(d))`
    /// * is called for each adjecency list, i.e., `self.vertex_count()` times
    fn sort_adj(&mut self) {
        self.graph_mut().sort_adj();
    }
}

impl<T, R> Dot for ErEnsembleM<T, R>
where T: Node
{
    fn dot_from_indices<F, W, S1, S2>(&self, writer: W, dot_options: S1, f: F)
        -> Result<(), std::io::Error>
    where
        S1: AsRef<str>,
        S2: AsRef<str>,
        W: Write,
        F: FnMut(usize) -> S2 {
        self.graph
            .dot_from_indices(writer, dot_options, f)
    }

    fn dot<S, W>(&self, writer: W, dot_options: S) -> Result<(), std::io::Error>
    where
        S: AsRef<str>,
        W: Write {
        self.graph
            .dot(writer, dot_options)
    }

    fn dot_string<S>(&self, dot_options: S) -> String
    where
        S: AsRef<str> {
        self.graph.dot_string(dot_options)
    }

    fn dot_string_from_indices<F, S1, S2>(&self, dot_options: S1, f: F) -> String
    where
        S1: AsRef<str>,
        S2: AsRef<str>,
        F: FnMut(usize) -> S2 {
        self.graph
            .dot_string_from_indices(dot_options, f)
    }

    fn dot_string_with_indices<S>(&self, dot_options: S) -> String
    where
        S: AsRef<str> {
        self.graph
            .dot_string_with_indices(dot_options)
    }

    fn dot_with_indices<S, W>(
            &self, writer: W,
            dot_options: S
        ) -> Result<(), std::io::Error>
    where
        S: AsRef<str>,
        W: Write {
        self.graph
            .dot_with_indices(writer, dot_options)
    }
}

impl<T, R> Contained<T> for ErEnsembleM<T, R>
where T: Node
{
    fn get_contained(&self, index: usize) -> Option<&T> {
        self.graph.get_contained(index)
    }

    fn get_contained_mut(&mut self, index: usize) -> Option<&mut T> {
        self.graph.get_contained_mut(index)
    }

    unsafe fn get_contained_unchecked(&self, index: usize) -> &T {
        self.graph.get_contained_unchecked(index)
    }

    unsafe fn get_contained_unchecked_mut(&mut self, index: usize) -> &mut T {
        self.graph.get_contained_unchecked_mut(index)
    }
}