1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
use{
    super::iterators::*,
    crate::{
        traits::*, 
        iter::*, 
        GraphErrors,
        graph::{
            NodeContainer,
            Graph
        }
    },
    sampling::histogram::{
        HistUsizeFast,
        HistogramVal
    },
    std::{
        convert::*,
        collections::*,
        marker::*,
        io::Write
    },
    rand::Rng
};

use std::num::NonZeroUsize;

#[cfg(feature = "serde_support")]
use serde::{Serialize, Deserialize};
/// # Generic graph implementation
/// * contains multiple measurable quantities
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct GenericGraph<T, A>
{
    pub(crate) next_id: usize,
    pub(crate) edge_count: usize,
    pub(crate) vertices: Vec<A>,
    pub(crate) phantom: PhantomData<T>,
}

impl<T, A> GenericGraph<T, A>
where T: Node,
      A: AdjContainer<T> {
    /// Create new graph with `size` nodes
    /// and no edges
    pub fn new(size: usize) -> Self {
        let mut vertices = Vec::with_capacity(size);
        vertices.extend(
            (0..size)
                .map(|i| A::new(i, T::new_from_index(i)))
        );
        Self{
            vertices,
            next_id: size,
            edge_count: 0,
            phantom: PhantomData,
        }
    }

    /// Use the topology from another graph and create a new one with 
    /// the same topology but the function 'map' is used to 
    /// map what is contained in the original Graph to the newly created one.
    pub fn clone_topology<F, T2>(&self, mut map: F) -> GenericGraph<T2, NodeContainer<T2>>
    where F: FnMut (&T) -> T2
    {
        let nodes: Vec<_> = self.vertices
            .iter()
            .enumerate()
            .map(
            |(index,node)|
            {
                let neighbors = node.neighbors().into_vec();
                NodeContainer{
                    id: index,
                    adj: neighbors,
                    node: map(node.contained())

                }
            }
        ).collect();
        GenericGraph{
            next_id: nodes.len(),
            edge_count: self.edge_count,
            vertices: nodes,
            phantom: PhantomData
        }
    }
}

impl<T, A> GenericGraph<T, A>
{
    /// Get internal vertice slice
    pub fn get_vertices(&self) -> &[A]
    {
        &self.vertices
    }
}

impl<T, A> GenericGraph<T, A>
where A: AdjContainer<T>
{
    /// # create a new graph
    /// * graph will contain `contained.len()` vertices, which will contain the corresponding entries
    /// of the vector `contained`
    /// * graph will not contain any edges upon creation
    /// ```
    /// use net_ensembles::{GenericGraph, graph::NodeContainer};
    /// 
    /// let graph = GenericGraph::<_, NodeContainer::<_>>::from_vec(vec!["first", "second", "third"]);
    /// assert_eq!(graph.at(0), &"first");
    /// assert_eq!(graph.at(1), &"second");
    /// assert_eq!(graph.at(2), &"third");
    /// assert_eq!(graph.vertex_count(), 3);
    /// assert_eq!(graph.edge_count(), 0);
    /// ```
    pub fn from_vec(contained: Vec<T>) -> Self
    {
        let vertices: Vec<_> = contained.into_iter()
            .enumerate()
            .map(|(index, t)| A::new(index, t))
            .collect();
        
        Self{
            next_id: vertices.len(),
            vertices,
            edge_count: 0,
            phantom: PhantomData
        }
    }
}

impl<T, A> GenericGraph<T, A>
where A: AdjContainer<T>
{

    /// # removes all edges from the graph
    /// * inexpensive O(1), if there are no edges to begin with
    /// * O(vertices) otherwise
    pub fn clear_edges(&mut self) {
        if self.edge_count() != 0 {
            self.edge_count = 0;
            for container in self.vertices.iter_mut() {
                unsafe { container.clear_edges(); }
            }
        }
    }

    /// # initialize Ring
    /// * every node is connected with its neighbors, which are
    /// not more than distance away
    pub(crate) fn init_ring(&mut self, distance: NonZeroUsize) -> Result<(), GraphErrors>
    {
        self.clear_edges();
        let n = self.vertex_count();

        for i in 0..n
        {
            for add in 1..=distance.get(){
                let sum = i + add;
                let index2 = if sum >= n {
                    sum - n
                } else {
                    sum
                };
                self.add_edge(i, index2)?
            }
        }
        Ok(())
    }

    /// # Sort adjecency lists
    /// If you depend on the order of the adjecency lists, you can sort them
    /// # Performance
    /// * internally uses [pattern-defeating quicksort](https://github.com/orlp/pdqsort)
    /// as long as that is the standard
    /// * sorts an adjecency list with length `d` in worst-case: `O(d log(d))`
    /// * is called for each adjecency list, i.e., `self.vertex_count()` times
    pub fn sort_adj(&mut self) {
        for container in self.vertices.iter_mut() {
            container.sort_adj();
        }
    }

    /// Shuffles all adjacency lists
    /// * This will not change the topology. It will change the internal order and thereby 
    /// randomize the order of the neighbors in the respective iterators
    pub fn shuffle_adjs<R: Rng>(&mut self, rng: &mut R)
    {
        self.vertices.iter_mut()
            .for_each(
                |v|
                v.shuffle_adj(rng)
            );
    }

    /// # Shuffles adjacency list
    /// * panics if index is out of bounds
    /// * This will not change the topology. It will change the internal order and thereby 
    /// randomize the order of the neighbors in the respective iterators
    pub fn shuffle_adj<R: Rng>(&mut self, rng: &mut R, index: usize)
    {
        self.vertices[index].shuffle_adj(rng)
    }


    /// # get `AdjContainer` of vertex `index`
    /// * **panics** if index out of bounds
    pub fn container(&self, index: usize) -> &A {
        &self.vertices[index]
    }

    /// # get `AdjContainer` of vertex `index`
    /// * `None` if index is out of bounds
    /// * `Some(&A)` else
    pub fn container_checked(&self, index: usize) -> Option<&A>
    {
        self.vertices.get(index)
    }

    /// * get iterator over AdjContainer in order of the indices
    /// * iterator returns `AdjContainer<Node>`
    pub fn container_iter(&self) -> std::slice::Iter::<A> {
        self.vertices.iter()
    }

    /// * iterate over `AdjContainer` of neighbors of vertex `index`
    /// * iterator returns `AdjContainer<Node>`
    /// * `sort_adj` will affect the order
    ///
    ///   If `let mut iter = self.contained_iter_neighbors()` is called directly after
    ///   `self.sort_adj()`, the following will be true (as long as `iter` does not return `None` of cause):
    ///   `iter.next().unwrap().id() < iter.next().unwrap.id() < ...` Note, that `...id()` returns the
    ///   index of the corresponding vertex
    /// * **panics** if index out of bounds
    pub fn container_iter_neighbors(&self, index: usize) -> NContainerIter<T, A, IterWrapper> {
        NContainerIter::new(
            self.vertices.as_slice(),
            self.vertices[index].neighbors()
        )
    }

    /// * get iterator over additional information stored at each vertex in order of the indices
    /// * iterator returns a `Node` (for example `EmptyNode` or whatever you used)
    /// * similar to `self.container_iter().map(|container| container.contained())`
    pub fn contained_iter(&self) -> ContainedIter<T, A> {
        ContainedIter::new(self.vertices.as_slice())
    }

    /// * same as `contained_iter`, but mutable
    pub fn contained_iter_mut(&mut self) -> ContainedIterMut<T, A> {
        ContainedIterMut::new (
            self.vertices.iter_mut()
        )

    }

    /// * iterate over additional information of neighbors of vertex `index`
    /// * iterator returns `&T`
    /// * `sort_adj` will affect the order
    /// * **panics** if index out of bounds
    pub fn contained_iter_neighbors(&self, index: usize) -> NContainedIter<T, A, IterWrapper> {
        NContainedIter::new(
            self.vertices.as_slice(),
            self.vertices[index].neighbors()
        )
    }

    /// * iterate over additional information of neighbors of vertex `index`
    /// * iterator returns (`index_neighbor`,`&T`)
    /// * `sort_adj` will affect the order
    /// * **panics** if index out of bounds
    pub fn contained_iter_neighbors_with_index(&self, index: usize) -> NIContainedIter<T, A> {
        NIContainedIter::new(
            self.vertices.as_slice(),
            self.vertices[index].neighbors()
        )
    }

    /// * iterate over mutable additional information of neighbors of vertex `index`
    /// * iterator returns `&mut T`
    /// * `sort_adj` will affect the order
    /// * **panics** if index out of bounds
    /// * See also: [`GraphIteratorsMut`](../traits/trait.GraphIteratorsMut.html)
    pub fn contained_iter_neighbors_mut(&mut self, index: usize) -> NContainedIterMut<T, A, IterWrapper> {
        assert!(
            index < self.vertices.len(),
            "contained_iter_neighbors_mut - index out of bounds"
        );

        let ptr = self.vertices.as_mut_ptr();
        let iter_helper: &mut A = unsafe { &mut *ptr.add(index) };
        let iter = iter_helper.neighbors();

        NContainedIterMut::new(
            self.vertices.as_mut_slice(),
            iter
        )
    }

    /// * iterate over mutable additional information of neighbors of vertex `index`
    /// * iterator returns `(index_neighbor: usize, neighbor: &mut T)`
    /// * `sort_adj` will affect the order
    /// * **panics** if index out of bounds
    /// * See also: [`GraphIteratorsMut`](../traits/trait.GraphIteratorsMut.html)
    pub fn contained_iter_neighbors_mut_with_index(&mut self, index: usize) -> INContainedIterMut<T, A> {
        assert!(
            index < self.vertices.len(),
            "contained_iter_neighbors_mut_with_index - index out of bounds"
        );

        let ptr = self.vertices.as_mut_ptr();
        let iter_helper: &mut A = unsafe { &mut *ptr.add(index) };
        let iter = iter_helper.neighbors();

        INContainedIterMut::new(
            self.vertices.as_mut_slice(),
            iter
        )
    }

    pub(crate) fn container_mut(&mut self, index: usize) -> &mut A {
        &mut self.vertices[index]
    }

    /// # For your calculations etc.
    /// * **read access** to **your struct** T, stored at **each vertex**, that implements `Node` trait
    /// ## Note
    /// * **panics** if index out of bounds
    pub fn at(&self, index: usize) -> &T {
        self.container(index).contained()
    }

    /// # For your calculations etc.
    /// * **read access** to **your struct** T, stored at **each vertex**, that implements `Node` trait
    /// * `None` if index is out of bounds
    pub fn at_checked(&self, index: usize) -> Option<&T>
    {
        self.container_checked(index)
            .map(|container| container.contained())
    }

    /// # For your calculations etc.
    /// * **write access** to **your struct** T, stored at **each vertex**, that implements `Node` trait
    /// # Note    
    /// * **panics** if index out of bounds
    pub fn at_mut(&mut self, index: usize) -> &mut T {
        self.container_mut(index).contained_mut()
    }

    /// returns number of vertices present in graph
    pub fn vertex_count(&self) -> usize {
        self.next_id
    }

    /// calculates the average degree of the graph
    /// * `(2 * edge_count) / vertex_count`
    pub fn average_degree(&self) -> f32 {
        (2 * self.edge_count()) as f32 / self.vertex_count() as f32
    }

    /// # Get mutable vertex
    /// * panics if index out of range
    pub(crate) fn get_mut_unchecked(&mut self, index: usize) -> &mut A {
        &mut self.vertices[index]
    }

    /// Returns two mutable references in a tuple
    /// ## panics in debug if:
    /// * index out of bounds
    /// * if indices are not unique
    pub(crate) fn get_2_mut(&mut self, index0: usize, index1: usize) -> (&mut A, &mut A)
    {
        debug_assert!(
            index0 < self.next_id &&
            index1 < self.next_id,
            "net_ensembles - panic - index out of bounds! \
                vertex_count: {}, index_0: {}, index1: {} - \
                error probably results from trying to add or remove edges",
            self.vertex_count(),
            index0,
            index1
            
        );

        debug_assert!(
            index0 != index1,
            "net_ensembles - panic - indices have to be unique! \
            error probably results from trying to add or remove self-loops"
        );

        let r1: &mut A;
        let r2: &mut A;

        let ptr = self.vertices.as_mut_ptr();

        unsafe {
            r1 = &mut *ptr.add(index0);
            r2 = &mut *ptr.add(index1);
        }

        (r1, r2)
    }

    /// Returns three mutable references in a tuple
    /// ## panics:
    /// * index out of bounds
    /// * in debug: if indices are not unique
    pub(crate) fn get_3_mut(&mut self, index0: usize, index1: usize, index2: usize) ->
        (&mut A, &mut A, &mut A)
    {
        debug_assert!(
            index0 < self.next_id &&
            index1 < self.next_id &&
            index2 < self.next_id
        );

        debug_assert!(
            index0 != index1 &&
            index1 != index2 &&
            index2 != index0
        );

        let r1: &mut A;
        let r2: &mut A;
        let r3: &mut A;

        let ptr = self.vertices.as_mut_ptr();

        unsafe {
            r1 = &mut *ptr.add(index0);
            r2 = &mut *ptr.add(index1);
            r3 = &mut *ptr.add(index2);
        }

        (r1, r2, r3)
    }

    /// Returns a reference to the element stored in the specified node or `None` if out of Bounds
    pub fn get_contained(&self, index: usize) -> Option<&T>
    {
        self.vertices
            .get(index)
            .map(|v| v.contained())
    }

    /// Returns a mutable reference to the element stored in the specified node or `None` if out of Bounds
    pub fn get_contained_mut(&mut self, index: usize) -> Option<&mut T>
    {
        self.vertices
            .get_mut(index)
            .map(|v| v.contained_mut())
    }

    /// Returns a reference to the element stored in the specified node
    ///
    /// For a save alternative see [get_contained](`Self::get_contained`)
    /// # Safety
    /// Calling this method with an out-of-bounds index is [undefined behavior](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) even if the resulting reference is not used.
    pub unsafe fn get_contained_unchecked(&self, index: usize) -> &T
    {
        self.vertices
            .get_unchecked(index)
            .contained()
    }

    /// Returns a mutable reference to the element stored in the specified node
    ///
    /// For a save alternative see [get_contained_mut](`Self::get_contained_mut`)
    /// # Safety
    /// Calling this method with an out-of-bounds index is [undefined behavior](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) even if the resulting reference is not used.    
    pub unsafe fn get_contained_unchecked_mut(&mut self, index: usize) -> &mut T
    {
        self.vertices
            .get_unchecked_mut(index)
            .contained_mut()
    }

    /// Adds edge between nodes `index1` and `index2`
    /// ## ErrorCases:
    /// | Error | Reason |
    /// | ---- | ---- |
    /// | `GraphErrors::IndexOutOfRange` | `index1` or `index2` larger than `self.vertex_count()`  |
    /// | `GraphErrors::EdgeExists` | requested edge already exists! |
    /// ## panics
    /// * if indices out of bounds
    /// * in debug: If `index0 == index1`
    pub fn add_edge(&mut self, index1: usize, index2: usize) -> Result<(),GraphErrors> {
        let (r1, r2) = self.get_2_mut(index1, index2);
        unsafe{ r1.push(r2)?; }
        self.edge_count += 1;
        Ok(())
    }

    /// Removes edge between nodes *index1* and *index2*
    /// ## ErrorCases:
    /// | Error | Reason |
    /// | ---- | ---- |
    /// | `GraphErrors::IndexOutOfRange` | `index1` or `index2` larger than `self.vertex_count()`  |
    /// | `GraphErrors::EdgeDoesNotExist` | requested edge does not exists |
    /// # panics
    /// * if index out of bounds
    /// * in debug: If `index0 == index1`
    pub fn remove_edge(&mut self, index1: usize, index2: usize) -> Result<(),GraphErrors> {
        let (r1, r2) = self.get_2_mut(index1, index2);
        unsafe{ r1.remove(r2)?; }
        self.edge_count -= 1;
        Ok(())
    }

    /// returns total number of edges in graph
    pub fn edge_count(&self) -> usize {
        self.edge_count
    }

    /// * returns number of vertices adjacent to vertex `index`
    /// * `None` if index out of bounds
    pub fn degree(&self, index: usize) -> Option<usize> {
        Some(
            self
                .vertices
                .get(index)?
                .degree()
        )
    }

    /// # Iterator
    /// Iterate over the degrees of each node (in the order of the indices)
    pub fn degree_iter(&'_ self) -> impl Iterator<Item=usize> + '_
    {
        self.vertices
            .iter()
            .map(A::degree)
    }

    /// # get degree vector
    /// * returns vector of length `self.vertex_count()`
    /// where each entry corresponds to the degree of the vertex with the respective index
    pub fn degree_vec(&self) -> Vec<usize>
    {
        let mut degree_vec = Vec::with_capacity(self.vertex_count());
        degree_vec.extend(self.degree_iter());
        degree_vec
    }

    /// # Get a histogram of the degrees
    /// * You can look at your degree distribution with this
    /// ## Safety
    /// * Assumes you have at least one node, panics otherwise
    pub fn degree_histogram(&self) -> HistUsizeFast
    {
        let mut iter = self.degree_iter();
        let mut min = iter.next()
            .expect("Expected at least one node");

        let mut max = min;

        iter.for_each(
            |val|
            {
                if val < min {
                    min = val
                } else if val > max {
                    max = val
                }
            }
        );

        let mut hist = match HistUsizeFast::new_inclusive(min, max)
        {
            Ok(hist) => hist,
            Err(_) => unreachable!()
        };

        self.degree_iter()
            .for_each(
                |entry|
                {
                    match hist.count_val(entry)
                    {
                        Ok(_) => (),
                        Err(_) => unreachable!(),
                    }
                }
            );

        hist
    }

    /// # returns `Iterator`
    ///
    /// * the iterator will iterate over the vertices in depth first search order,
    /// beginning with vertex `index`.
    /// * iterator returns what is contained at the corresponding vertices, i.e., `&T`
    /// * iterator always returns None if index out of bounds
    ///
    /// Order
    ///------------------------
    /// Order is guaranteed to be in DFS order, however
    /// if this order is not unambiguous
    /// adding edges and especially removing edges will shuffle the order.
    ///
    /// Note:
    /// ----------------------
    /// Will only iterate over vertices within the connected component that contains vertex `index`
    pub fn dfs(&self, index: usize) -> Dfs<T, A> {
        Dfs::new(self, index)
    }

    /// # returns `Iterator`
    ///
    /// * the iterator will iterate over the vertices in depth first search order,
    /// beginning with vertex `index`.
    /// * iterator returns what is contained at the corresponding vertices, i.e., `&mut T`
    /// * iterator always returns None if index out of bounds
    ///
    /// Order
    ///------------------------
    /// Order is guaranteed to be in DFS order, however
    /// if this order is not unambiguous
    /// adding edges and especially removing edges will shuffle the order.
    ///
    /// Note:
    /// ----------------------
    /// Will only iterate over vertices within the connected component that contains vertex `index`
    pub fn dfs_mut(&mut self, index: usize) -> DfsMut<T, A>
    {
        DfsMut::new(self, index)
    }

    /// # returns `Iterator`
    ///
    /// * the iterator will iterate over the vertices in depth first search order,
    /// beginning with vertex `index`.
    /// * Iterator returns tuple `(index, node)`
    /// * iterator always returns None if index out of bounds
    ///
    /// Order
    ///------------------------
    /// Order is guaranteed to be in DFS order, however
    /// if this order is not unambigouse
    /// adding edges and especially removing edges will shuffle the order.
    ///
    /// Note:
    /// ----------------------
    /// Will only iterate over vertices within the connected component that contains vertex `index`
    pub fn dfs_with_index(&self, index: usize) -> DfsWithIndex<T, A> {
        DfsWithIndex::new(self, index)
    }

    /// # returns `Iterator`
    ///
    /// * the iterator will iterate over the vertices in breadth first search order,
    /// beginning with vertex `index`.
    /// * Iterator returns tuple `(index, node, depth)` where `node` is what is contained at the 
    /// corresponding index, i.e., `&T`
    ///
    /// ### depth
    /// * starts at 0 (i.e. the first element in the iterator will have `depth = 0`)
    /// * `depth` equals number of edges in the *shortest path* from the *current* vertex to the
    /// *first* vertex (i.e. to the vertex with index `index`)
    ///
    /// Order
    ///------------------------
    /// Order is guaranteed to be in BFS order, however
    /// if this order is not unambigouse
    /// adding edges and especially removing edges will shuffle the order.
    ///
    /// Note:
    /// ----------------------
    /// Will only iterate over vertices within the connected component that contains vertex `index`
    pub fn bfs_index_depth(&self, index: usize) -> Bfs<T, A> {
        Bfs::new(self, index)
    }

    /// # returns `Iterator`
    ///
    /// * the iterator will iterate over the vertices in breadth first search order,
    /// beginning with vertex `index`.
    /// * Iterator returns tuple `(index, node, depth)` where `node` is what is contained at the 
    /// corresponding index, i.e., `&mut T`
    ///
    /// ### depth
    /// * starts at 0 (i.e. the first element in the iterator will have `depth = 0`)
    /// * `depth` equals number of edges in the *shortest path* from the *current* vertex to the
    /// *first* vertex (i.e. to the vertex with index `index`)
    ///
    /// Order
    ///------------------------
    /// Order is guaranteed to be in BFS order, however
    /// if this order is not unambigouse
    /// adding edges and especially removing edges will shuffle the order.
    ///
    /// Note:
    /// ----------------------
    /// Will only iterate over vertices within the connected component that contains vertex `index`
    pub fn bfs_index_depth_mut(&mut self, index: usize) -> BfsMut<T, A> {
        BfsMut::new(self, index)
    }

    // # returns `Option<Iterator>`
    /// * similar to self.bfs_index_depth, but allows for ignoring of vertices
    ///
    /// * the iterator will iterate over the vertices in breadth first search order,
    /// beginning with vertex `index`.
    /// * the iterator will ignore all vertices, where `filter(vertex, index_of_vertex)` returns false
    /// * returns `None`if index is out of bounds or `filter(vertex, index)`retruns false
    /// * Iterator returns tuple `(index, vertex, depth)`
    ///
    /// ### depth
    /// * starts at 0 (i.e. the first element in the iterator will have `depth = 0`)
    /// * `depth` equals number of edges in the *shortest path* from the *current* vertex to the
    /// *first* vertex (i.e. to the vertex with index `index`), while ignoring paths that 
    /// go through filtered out vertices
    ///
    /// Order
    ///------------------------
    /// Order is guaranteed to be in BFS order, however
    /// if this order is not unambigouse
    /// adding edges and especially removing edges will shuffle the order.
    ///
    /// Note:
    /// ----------------------
    /// Will only iterate over vertices within the connected component that contains vertex `index`
    pub fn bfs_filtered<F>(&'_ self, index: usize, filter: F) -> Option<BfsFiltered<'_, T, A>>
    where F: FnMut(&T, usize) -> bool,
    {
        BfsFiltered::new(self, index, filter)
    }

    /// | result       |                          condition                       |
    /// |--------------|----------------------------------------------------------|
    /// | `None`       | **if** graph does not contain any vertices               |
    /// | `Some(true)` | **else if** all vertices are connected by paths of edges |
    /// | `Some(false)`| **otherwise**                                            |
    pub fn is_connected(&self) -> Option<bool> {
        if self.vertex_count() == 0 {
            None
        } else {
            Some(self.dfs(0).count() == self.vertex_count())
        }
    }

    /// # definition
    /// Calculates the size of the **q-core** (i.e. number of nodes in the biggest possible set of nodes,
    /// where all nodes from the set are connected with at least `q` other nodes from the set)
    ///
    /// returns `None` if impossible to calculate (e.g. `vertex_count == 0` or `q <= 1`)
    /// # Example
    /// ```
    /// use net_ensembles::EmptyNode;
    /// use net_ensembles::Graph;
    ///
    /// let graph: Graph<EmptyNode> = Graph::new(0);
    /// assert_eq!(graph.q_core(1), None);
    /// assert_eq!(graph.q_core(2), None);
    ///
    /// let graph2: Graph<EmptyNode> = Graph::new(1);
    ///
    /// assert_eq!(graph2.q_core(1), None);
    /// assert_eq!(graph2.q_core(2), Some(0));
    ///
    ///
    /// // create complete graph
    /// let mut graph3: Graph<EmptyNode> = Graph::new(20);
    /// for i in 0..graph3.vertex_count() {
    ///     for j in i+1..graph3.vertex_count() {
    ///         graph3.add_edge(i, j).unwrap();
    ///     }
    /// }
    ///
    /// // since this is a complete graph, the q-core should always consist of 20 nodes
    /// // as long as q < 20, as every node has 19 neighbors
    /// for i in 2..20 {
    ///     assert_eq!(graph3.q_core(i), Some(20));
    /// }
    ///
    /// assert_eq!(graph3.q_core(20), Some(0));
    /// ```
    pub fn q_core(&self, q: usize) -> Option<usize> {
        if q < 2 || self.vertex_count() == 0 {
            return None;
        }

        let mut degree: Vec<_> = self.container_iter()
            .map(|vertex| vertex.degree())
            .collect();

        // virtually: recursively remove all vertices with less then q neighbors
        let mut something_changed = true;

        while something_changed {
            something_changed = false;
            for i in 0..self.vertex_count() {
                if degree[i] == 0 {
                    continue;
                }
                if degree[i] < q {
                    self.vertices[i]
                        .neighbors()
                        .for_each(|&n|
                            {
                                if degree[n] > 0 {
                                    degree[n] -= 1;
                                }
                            }
                        );
                    degree[i] = 0;
                    something_changed = true;
                }
            }
        }

        // find biggest component
        let mut result = 0;
        // initiate stack
        let mut stack: Vec<usize> = Vec::with_capacity(self.vertex_count());

        for i in 0..self.vertex_count() {
            // skip all nodes that are removed or in a known component
            if degree[i] == 0 {
                continue;
            }
            let mut counter = 0;
            stack.push(i);

            // i is in known component
            degree[i] = 0;

            while let Some(index) = stack.pop() {
                counter += 1;

                for &j in self
                    .container(index)
                    .neighbors()    // iterate over neighbors
                {
                    // skip if already handled
                    if degree[j] == 0 {
                        continue;
                    }

                    degree[j] = 0;
                    stack.push(j);
                }
            }
            result = result.max(counter);
        }

        Some(result)
    }

    /// # compute connected component ids
    /// * used for `self.connected_components()`
    /// * each vertex gets an id, all vertices with the same id are in the same connected component
    /// * returns (number of components, vector of ids)
    pub fn connected_components_ids(&self) -> (usize, Vec<isize>)
    {
        let mut component_id : Vec<isize> = vec![-1; self.vertex_count()];
        let mut current_id = 0;

        for i in 0..self.vertex_count(){
            // already in a component?
            if component_id[i] != -1 {
                continue;
            }

            // start depth first search over indices of vertices connected with vertex i
            for (j, _) in self.dfs_with_index(i) {
                component_id[j] = current_id;
            }
            current_id += 1;

        }
        // cast current_id as usize
        let num_components = usize::try_from(current_id)
            .expect("connected_components ERROR 0");

        (num_components, component_id)
    }

    /// # compute sizes of all *connected components*
    ///
    /// * the **number** of connected components is the **size** of the returned vector, i.e. `result.len()`
    /// * returns **empty** vector, if graph does not contain vertices
    /// * returns (reverse) **ordered vector of sizes** of the connected components,
    /// i.e. the biggest component is of size `result[0]` and the smallest is of size `result[result.len() - 1]`
    pub fn connected_components(&self) -> Vec<usize> {

        let (num_components, component_id) = self.connected_components_ids();

        let mut result = vec![0; num_components];

        for i in component_id {
            let as_usize = usize::try_from(i)
                .expect("connected_components ERROR 1");
            result[as_usize] += 1;
        }

        // sort by reverse
        // unstable here means inplace and ordering of equal elements is not guaranteed
        result.sort_unstable_by(
            |a, b|
            a.partial_cmp(b)
                .unwrap()
                .reverse()
        );
        result
    }

    /// # Connects connected components (CCs)
    /// * returns vector of indices, where each corresponding node is in a different
    /// connected component
    pub(crate) fn suggest_connections(& self) -> Vec<usize>
    {
        let mut suggestions = Vec::new();
        let mut component_id : Vec<i32> = vec![-1; self.vertex_count()];
        let mut current_id = 0;
        for i in 0..self.vertex_count(){
            // already in a component?
            if component_id[i] != -1 {
                continue;
            }
            suggestions.push(i);

            // start depth first search over indices of vertices connected with vertex i
            for (j, _) in self.dfs_with_index(i) {
                component_id[j] = current_id;
            }
            current_id += 1;

        }
        suggestions
    }

    /// Count number of leaves in the graph, i.e. vertices with exactly one neighbor
    pub fn leaf_count(&self) -> usize {
        self.vertices
            .iter()
            .filter(|a| a.degree() == 1)
            .count()
    }

    /// * Creates String which contains the topology of the network in a format
    /// that can be used by **circo** etc. to generate a pdf of the graph.
    /// * **indices** are used as **labels**
    /// * search for **graphviz** to learn about **.dot** format
    #[deprecated(
        since = "0.3.0",
        note = "Please use any method of the `Dot` trait instead, e.g., `dot_with_indices`"
    )]
    pub fn to_dot(&self) -> String {
        let mut s = "graph{\n\t".to_string();

        for i in 0..self.vertex_count() {
            let _ = std::fmt::Write::write_fmt(&mut s, format_args!("{i} "));
        }
        s += "\n";

        for i in 0..self.vertex_count() {
            for &j in self.container(i).neighbors() {
                if i < j {
                    let _ = std::fmt::Write::write_fmt(&mut s, format_args!("\t{} -- {}\n", i, j));
                }
            }
        }
        s += "}";
        s
    }

    /// # Example
    /// ```
    /// use std::fs::File;
    /// use std::io::prelude::*;
    /// use net_ensembles::{Graph, EmptyNode, dot_constants::EXAMPLE_DOT_OPTIONS};
    ///
    /// let mut graph: Graph<EmptyNode> = Graph::new(3);
    /// graph.add_edge(0, 1).unwrap();
    /// graph.add_edge(0, 2).unwrap();
    /// graph.add_edge(1, 2).unwrap();
    ///
    /// // create string of dotfile
    /// let s = graph.to_dot_with_labels_from_contained(
    ///    EXAMPLE_DOT_OPTIONS,
    ///    |_contained, index| format!("Hey {}!", index)
    /// );
    ///
    /// // write to file
    /// let mut f = File::create("example.dot").expect("Unable to create file");
    /// f.write_all(s.as_bytes()).expect("Unable to write data");
    ///
    /// ```
    /// In this example, `example.dot` now contains:
    /// ```dot
    /// graph G{
    ///     bgcolor="transparent";
    ///     fontsize=50;
    ///     node [shape=ellipse, penwidth=1, fontname="Courier", pin=true ];
    ///     splines=true;
    ///     0 1 2 ;
    ///     "0" [label="Hey 0!"];
    ///     "1" [label="Hey 1!"];
    ///     "2" [label="Hey 2!"];
    ///     0 -- 1
    ///     0 -- 2
    ///     1 -- 2
    /// }
    /// ```
    ///
    /// Then you can use, e.g.,
    /// ```console
    /// foo@bar:~$ circo example.dot -Tpdf > example.pdf
    /// ```
    /// to create a **pdf** representation from it.
    /// Search for **graphviz** to learn more.
    #[deprecated(
        since = "0.3.0",
        note = "Please use any method of the `DotExtra` trait instead, e.g., `dot_from_contained_index`"
    )]
    pub fn to_dot_with_labels_from_contained<F, S1, S2>(&self, dot_options: S1, f: F ) -> String
    where
        S1: AsRef<str>,
        S2: AsRef<str>,
        F: Fn(&T, usize) -> S2
    {
        let mut writer = Vec::<u8>::with_capacity(40 * self.vertices.len());
        self.dot_from_contained_index(
            &mut writer,
            dot_options,
            |index, c|
            f(c, index)
        ).unwrap();
        String::from_utf8(writer)
            .unwrap()
    }

    /// # Same as `to_dot_with_labels_from_contained` but with access to neighbor information
    /// # Example
    /// ```
    /// use std::fs::File;
    /// use std::io::prelude::*;
    /// use net_ensembles::traits::*;
    /// use net_ensembles::dot_constants::*;
    /// use net_ensembles::{Graph,EmptyNode};
    ///
    /// let mut graph: Graph<EmptyNode> = Graph::new(5);
    /// graph.add_edge(0, 1).unwrap();
    /// graph.add_edge(0, 2).unwrap();
    /// graph.add_edge(1, 2).unwrap();
    /// graph.add_edge(0, 3).unwrap();
    /// graph.add_edge(3, 4).unwrap();
    ///
    /// // create string of dotfile
    /// let s = graph.to_dot_with_labels_from_container(
    ///     &[SPLINES, NO_OVERLAP].join("\n\t"),
    ///     |container, index|
    ///     {
    ///         container.contained();  // does nothing in this example, but you can still access
    ///                                 // contained, as you could in
    ///                                 // to_dot_with_labels_from_contained
    ///         format!("index {}, degree: {}", index, container.degree())
    ///     }
    /// );
    ///
    /// // write to file
    /// let mut f = File::create("example_2.dot").expect("Unable to create file");
    /// f.write_all(s.as_bytes()).expect("Unable to write data");
    ///
    /// ```
    /// In this example, `example_2.dot` now contains:
    /// ```dot
    /// graph G{
    ///     splines=true;
    ///     overlap=false;
    ///     0 1 2 3 4 ;
    ///     "0" [label="index 0, degree: 3"];
    ///     "1" [label="index 1, degree: 2"];
    ///     "2" [label="index 2, degree: 2"];
    ///     "3" [label="index 3, degree: 2"];
    ///     "4" [label="index 4, degree: 1"];
    ///     0 -- 1
    ///     0 -- 2
    ///     0 -- 3
    ///     1 -- 2
    ///     3 -- 4
    /// }
    /// ```
    ///
    /// Then you can use, e.g.,
    /// ```console
    /// foo@bar:~$ circo example_2.dot -Tpdf > example_2.pdf
    /// ```
    /// to create a **pdf** representation from it.
    /// Search for **graphviz** to learn more.
    #[deprecated(
        since = "0.3.0",
        note = "Please use any method of the `DotExtra` trait instead, e.g., `dot_from_container_index`"
    )]
    pub fn to_dot_with_labels_from_container<F, S1, S2>(&self, dot_options: S1, f: F ) -> String
        where
            S1: AsRef<str>,
            S2: AsRef<str>,
            F: Fn(&A, usize) -> S2,
    {
        let mut writer = Vec::<u8>::with_capacity(40 * self.vertices.len());
        self.dot_from_container_index(
            &mut writer,
            dot_options,
            |index, c|
            f(c, index)
        ).unwrap();
        String::from_utf8(writer)
            .unwrap()
    }

    /// * returns `None` **if** graph not connected **or** does not contain any vertices
    /// * uses repeated breadth first search
    pub fn diameter(&self) -> Option<usize> {
        if !self.is_connected()? {
            None
        } else {
            // well, then calculate from every node
            // (except 1 node) and use maximum found
            
            let mut max = 0;
            let mut bfs = self.bfs_index_depth(0);
            for index in 1..self.vertex_count() {
                let mut depth = 0;
                bfs.reuse(index);
                for (.., d) in &mut bfs {
                    depth = d;
                }
                max = max.max(depth);
            }

            Some(max)
        }
    }

    /// calculate the size of the longest shortest path **starting from** vertex with **index** `index`
    /// using breadth first search
    pub fn longest_shortest_path_from_index(&self, index: usize) -> Option<usize> {
        let (.., depth) = self.bfs_index_depth(index)
                            .last()?;
        Some(depth)
    }

    /// # calculate sizes of all binode connected components
    /// * returns (reverse) **ordered vector of sizes**
    /// i.e. the biggest component is of size `result[0]` and the smallest is of size `result[result.len() - 1]`
    /// * destroys the underlying topology and therefore moves `self`
    /// * if you still need your graph,
    /// use `self.clone().vertex_biconnected_components(false/true)` for your calculations
    /// # Definition: `vertex_biconnected_components(false)`
    /// Here, the (vertex) biconnected component of a graph is defined as maximal subset of nodes,
    /// where any one node could be removed and the remaining nodes would still be a connected component.
    /// ## Note
    /// Two vertices connected by an edge are considered to be biconnected, since after the
    /// removal of one vertex (and the corresponding edge), only one vertex remains.
    /// This vertex is in a connected component with itself.
    /// # Alternative Definition: `vertex_biconnected_components(true)`
    /// If you want to use the alternative definition:
    /// > The biconnected component is defined as maximal subset of vertices, where each vertex can be
    /// > reached by at least two node independent paths
    ///
    /// The alternative definition just removes all 2s from the result vector.
    /// # Citations
    /// I used the algorithm described in this paper:
    /// >  J. Hobcroft and R. Tarjan, "Algorithm 447: Efficient Algorithms for Graph Manipulation"
    /// > *Commun. ACM*, **16**:372-378, 1973, DOI: [10.1145/362248.362272](https://doi.org/10.1145/362248.362272)
    ///
    /// You can also take a look at:
    /// > M. E. J. Newman, "Networks: an Introduction" *Oxfort University Press*, 2010, ISBN: 978-0-19-920665-0.
    pub fn vertex_biconnected_components(mut self, alternative_definition: bool) -> Vec<usize> {

        let mut low: Vec<usize> = vec![0; self.vertex_count()];
        let mut number: Vec<usize> = vec![0; self.vertex_count()];
        let mut handled: Vec<bool> = vec![false; self.vertex_count()];
        let mut edge_stack: Vec<(usize, usize)> = Vec::with_capacity(self.vertex_count());
        let mut vertex_stack: Vec<usize> = Vec::with_capacity(self.vertex_count());
        let mut biconnected_components: Vec<Vec<(usize, usize)>> = Vec::new();

        let mut next_edge: (usize, usize);

        for pivot in 0..self.vertex_count() {

            if handled[pivot] {
                continue;
            }
            low[pivot] = 0;
            number[pivot] = 0;
            handled[pivot] = true;
            vertex_stack.push(pivot);

            while let Some(&top_vertex) = vertex_stack.last() {
                // if it has neighbors
                // does the vertex have neighbors?
                if self
                    .degree(top_vertex)
                    .unwrap() > 0
                    {
                        // remove one edge from graph, put it on stack
                        next_edge = (
                            top_vertex,
                            *self
                            .container(top_vertex)
                            .get_adj_first()
                            .unwrap()
                        );
                        edge_stack.push(next_edge);
                        let next_vertex = next_edge.1;
                        self.remove_edge(next_edge.0, next_edge.1).unwrap();

                        // check if next_vertex is not handled yet
                        if !handled[next_vertex] {
                            // number new point
                            number[next_vertex] = vertex_stack.len();
                            // add to stack of points
                            vertex_stack.push(next_edge.1);
                            // set LOWPOINT of the new point to NUMBER of current point
                            low[next_vertex] = number[top_vertex];
                            // now the point was visited once -> handled
                            handled[next_vertex] = true;
                        }
                        // Head of edge new point? NO -> Number of Head of edge lower than LOWPOINT of top point?
                        else if number[next_vertex] < low[top_vertex] {
                            // Set LOWPOINT of top Point to that number
                            low[top_vertex] = number[next_vertex];
                        }
                    }
                    // top point on stack has no edge
                    else {
                        vertex_stack.pop();
                        // at least one point in stack?
                        if let Some(&next_vertex) = vertex_stack.last() {
                            // LOWPOINT of top point equals NUMBER of next point on stack?
                            if low[top_vertex] == number[next_vertex]{
                                let mut tmp_component: Vec<(usize, usize)> = Vec::new();

                                while let Some(current_edge) = edge_stack.last() {
                                    if number[current_edge.1] < number[next_vertex]
                                    || number[current_edge.0] < number[next_vertex]
                                    {
                                        break;
                                    }
                                    tmp_component.push(*current_edge);
                                    edge_stack.pop();
                                }
                                // add to biconnected_components
                                if !tmp_component.is_empty(){
                                    biconnected_components.push(tmp_component);
                                }
                            }
                            // LOWPOINT of top point equals NUMBER of next point on stack? NO
                            else if low[top_vertex] < low[next_vertex] {
                                // Set LOWPOINT of next point equal LOWPOINT of current point if less
                                low[next_vertex] = low[top_vertex]
                            }

                        }
                        // no more vertices in stack stack?
                        else {
                            // exit loop
                            break;
                        }
                    }
                }
        }
        let mut result = Vec::with_capacity(biconnected_components.len());

        for component in biconnected_components {
            let mut size_set = HashSet::new();
            for edge in component {
                size_set.insert(edge.0);
                size_set.insert(edge.1);
            }
            result.push(size_set.len());
        }

        if alternative_definition {
            result.retain(|&val| val > 2);
        }
        // sort by reverse
        // unstable here means inplace and ordering of equal elements is not guaranteed
        result.sort_unstable_by(
            |a, b|
            a.partial_cmp(b)
                .unwrap()
                .reverse()
        );

        result
    }

    /// # Closely related (most of the time equal) to betweeness
    /// ## calculates vertex_load of all vertices in O(edges * vertices)
    /// * calculates the vertex_load for every vertex
    /// * defined as how many shortest paths pass through each vertex
    ///
    /// | variant             |                                                                                                                        |
    /// |---------------------|------------------------------------------------------------------------------------------------------------------------|
    /// | `vertex_load(true)`  | includes endpoints in calculation (for a complete graph with `N` vertices, every node will have vertex_load `N - 1`)  |
    /// | `vertex_load(false)` | excludes endpoints in calculation (for a complete graph with `N` vertices, every node will have vertex_load `0`)      |
    /// # Citations
    /// I used the algorithm described in
    /// > M. E. J. Newman, "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality",
    /// > Phys. Rev. E **64**, 016132, 2001, DOI: [10.1103/PhysRevE.64.016132](https://doi.org/10.1103/PhysRevE.64.016132)
    ///
    /// see also:
    /// > M. E. J. Newman, "Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality",
    /// > Phys. Rev. E **73**, 039906, 2006, DOI: [10.1103/PhysRevE.73.039906](https://doi.org/10.1103/PhysRevE.73.039906)
    pub fn vertex_load(&self, include_endpoints: bool) -> Vec<f64> {

        let mut queue0 = VecDeque::with_capacity(self.vertex_count());
        let mut queue1 = VecDeque::with_capacity(self.vertex_count());
        let mut ordering: Vec<usize> = Vec::with_capacity(self.vertex_count());
        let mut b = vec![0.0; self.vertex_count()];
        let mut b_k = vec![1f64; self.vertex_count()];
        let mut distance: Vec<Option<usize>> = vec![None; self.vertex_count()];
        let mut predecessor: Vec<Vec<usize>> = vec![Vec::new(); self.vertex_count()];
        

        for i in 0..self.vertex_count() {
            
            // initialize without allocation
            if i > 0 {
                for j in 0..self.vertex_count()
                {
                    b_k[j] = 1.0;
                    distance[j] = None;
                    // clear predecessors, way more efficient then new allocation
                    predecessor[j].clear();
                }
            }
            

            let mut depth = 0;
            queue0.push_back(i);
            distance[i] = Some(depth);


            // build up predecessor and ordering information
            while let Some(index) = queue0.pop_front() {
                ordering.push(index); // to get indices in reverse order of distance
                let container = self.container(index);
                for &neighbor in container.neighbors() {
                    if let Some(d) = distance[neighbor] {
                        if d == depth + 1 {
                            predecessor[neighbor].push(index);
                        }
                    }
                    // None
                    else {
                        distance[neighbor] = Some(depth + 1);
                        queue1.push_back(neighbor);
                        predecessor[neighbor].push(index);
                    }
                }
                if queue0.is_empty() {
                    std::mem::swap(&mut queue0, &mut queue1);
                    depth += 1;
                }
            }

            // calculate vertex_load resulting from the shortest paths starting at vertex i
            while let Some(index) = ordering.pop() {
                // skip last vertex
                if ordering.is_empty(){
                    break;
                }
                // add number of shortest path to total count

                b[index] += b_k[index];
                if !include_endpoints {
                    b[index] -= 1.0;
                }


                let fraction = b_k[index] / predecessor[index].len() as f64;
                for pred in predecessor[index].iter() {
                    b_k[*pred] += fraction;
                }
            }

        }
        b
    }

    pub fn closeness_centrality(&self) -> Vec<f64>
    {
        let mut count = vec![0; self.vertex_count()];

        let mut bfs = Bfs::new(self, 0);
        for i in 0..self.vertex_count()
        {
            bfs.reuse(i);
            for (index, _, depth) in &mut bfs{
                count[index] += depth;
            }
        }
        let val = (self.vertex_count() - 1) as f64;
        count.into_iter()
            .map(|count| val / count as f64)
            .collect()
    }

    /// # Calculates transitivity of graph
    /// * related to cluster coefficient (Note: transitivity and cluster coefficient are similar,
    /// but **not** necessarily equal)
    /// * returns `NaN`, if there are no paths of length two in the graph
    /// ## Definition
    /// > transitivity = (number of closed paths of length two) / (number of paths of length two)
    /// ## Citations
    /// For the definition see for example:
    /// > M. E. J. Newman, "Networks: an Introduction" *Oxfort University Press*, 2010, ISBN: 978-0-19-920665-0.
    pub fn transitivity(&self) -> f64 {
        let mut path_count: usize = 0;
        let mut closed_path_count: usize = 0;
        for source_index in 0..self.vertex_count() {
            for neighbor_1 in self
                                .container(source_index)
                                .neighbors()
            {
                for neighbor_2 in self
                                    .container(*neighbor_1)
                                    .neighbors()
                                    .filter(|&i| *i != source_index)  // do not use edge we came from
                {
                    if self
                        .container(*neighbor_2)
                        .is_adjacent(source_index)
                    {
                        closed_path_count += 1;
                    }
                    path_count += 1;
                }
            }
        }

        closed_path_count as f64 / path_count as f64
    }

    /// # Create a subgraph
    /// Method to create a subgraph. `node_list` should contain all the indices 
    /// corresponding to the nodes you want to keep, the order of the indices is 
    /// irrelevant. Duplicate indices will be ignored. 
    /// If any index is out of bounds (or `node_list` is empty), `None` will be returned
    /// 
    /// All edges between nodes that are inside the `node_list` will be kept.
    /// All other edges will be discarded. 
    /// The nodes in the subgraph will get new indices corresponding to their new position.
    /// The contained information (`T`) will be cloned.
    /// ## Note
    /// The container used will be changed to a [NodeContainer](crate::graph::NodeContainer),
    /// since I cannot guarantee that other container would make sense here. 
    /// E.g., if you used a [SwContainer](crate::sw_graph::SwContainer) the 
    /// information about the root edges might become invalid, because the corresponding 
    /// nodes might not be part of the subgraph
    pub fn cloned_subgraph(&self, mut node_list: Vec<usize>) -> Option<Graph<T>>
    where T: Clone
    {
        // get correct order
        node_list.sort_unstable();

        let last = *node_list.last()?;
        // check if biggest node is valid
        if last >= self.vertex_count() {
            return None;
        }

        // remove duplicates
        node_list.dedup();

        let map: HashMap<usize, usize> = node_list.iter()
            .copied()
            .zip(0..)
            .collect();

        let mut vertices = Vec::with_capacity(node_list.len());

        vertices.extend(
            node_list.into_iter()
                .enumerate()
                .map(
                    |(i, node_index)|
                    {
                        let container = self.container(node_index);
                        let mut adj = Vec::with_capacity(container.degree());
            
                        adj.extend(
                            container.neighbors()
                                .filter_map(|n| map.get(n))
                                .copied()
                            );
                        NodeContainer{
                            id: i,
                            adj,
                            node: container.contained().clone()
                        }
                    }
                )
        );

        let edge_count = vertices.iter()
            .map(NodeContainer::degree)
            .sum::<usize>() / 2;


        Some(
            Graph{
                next_id: vertices.len(),
                edge_count,
                vertices,
                phantom: PhantomData 
            }
        )
    }

}

impl<T, A> DotExtra<T, A> for GenericGraph<T, A>
where
    A: AdjContainer<T>,
{
    fn dot_from_container_index<F, S1, S2, W>(&self, mut writer: W, dot_options: S1, mut f: F)
        -> Result<(), std::io::Error>
        where
            S1: AsRef<str>,
            S2: AsRef<str>,
            F: FnMut(usize, &A) -> S2,
            W: Write
    {
        write!(writer, "graph G{{\n\t{}\n\t", dot_options.as_ref())?;

        for i in 0..self.vertex_count() {
            write!(writer, "{} ", i)?;
        }
        writeln!(writer, ";")?;

        for (index, container) in self.container_iter().enumerate() {
            let fun = f(index, container);
            writeln!(writer, "\t\"{}\" [label=\"{}\"];", index, fun.as_ref())?;
        }

        for i in 0..self.vertex_count() {
            for &j in self.container(i).neighbors() {
                if i < j {
                    writeln!(writer, "\t{} -- {}", i, j)?;

                }
            }
        }
        write!(writer, "}}")
    }

    fn dot_from_contained_index<F, S1, S2, W>(&self, writer: W, dot_options: S1, mut f: F)
        -> Result<(), std::io::Error>
        where
            W: Write,
            S1: AsRef<str>,
            S2: AsRef<str>,
            F: FnMut(usize, &T) -> S2
    {
        self.dot_from_container_index(
            writer,
            dot_options,
            |index, a| f(index, a.contained())
        )
    }
}

impl<T, A> Dot for GenericGraph<T, A>
where T: Node,
      A: AdjContainer<T>
{
    fn dot_from_indices<F, W, S1, S2>(&self, mut writer: W, dot_options: S1, mut f: F) -> Result<(), std::io::Error>
    where
        S1: AsRef<str>,
        S2: AsRef<str>,
        W: Write,
        F: FnMut(usize) -> S2,
    {
        write!(writer, "graph G{{\n\t{}\n\t", dot_options.as_ref())?;

        for i in 0..self.vertex_count() {
            write!(writer, "{} ", i)?;
        }
        writeln!(writer, ";")?;

        for index in 0..self.vertex_count() {
            let fun = f(index);
            writeln!(writer, "\t\"{}\" [label=\"{}\"];", index, fun.as_ref())?;
        }

        for i in 0..self.vertex_count() {
            for &j in self.container(i).neighbors() {
                if i < j {
                    writeln!(writer, "\t{} -- {}", i, j)?;

                }
            }
        }
        write!(writer, "}}")
    }
}