1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
use {
    crate::{
        AdjContainer,
        GenericGraph
    },
    std::{
        marker::PhantomData,
        collections::VecDeque
    }
};


/// Depth first search Iterator
pub struct Dfs<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        vertices: &'a [A],
        handled: Vec<bool>,
        stack: Vec<usize>,
        marker: PhantomData<T>
}


impl<'a, T, A> Dfs<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
    pub(crate) fn new(graph: &'a GenericGraph<T, A>, index: usize) -> Self {
        let mut handled: Vec<bool> = vec![false; graph.vertex_count()];
        let mut stack: Vec<usize> = Vec::with_capacity(graph.vertex_count());
        
        if index < handled.len()
        {
            stack.push(index);
            handled[index] = true;
        }

        Dfs {
            vertices: graph.vertices.as_slice(),
            handled,
            stack,
            marker: PhantomData
        }
    }
}

impl<'a, T, A> Iterator for Dfs<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        let index = self.stack.pop()?;
        let container = &self.vertices[index];
        for &i in container.neighbors() {
            if !self.handled[i] {
                self.handled[i] = true;
                self.stack.push(i);
            }
        }
        Some(container.contained())
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.stack.len(), Some(self.handled.len()))
    }
}

/// # Depth first search iterator
/// * used to iterate over what is contained in a [`GenericGraph`](crate::GenericGraph::dfs_mut)
/// ## Borrow checker works
/// I am using the dark arts of unsafe rust to make this 
/// Iterator work. The following is a doc test to assert
/// that the borrow checker still forbids double mutable access
/// ```compile_fail
/// use net_ensembles::{Graph, CountingNode};
/// let mut graph = Graph::<CountingNode>::complete_graph(10);
/// 
/// let mut iter = graph.dfs_mut(0);
/// 
/// let first = iter.next().unwrap();
/// first.index = 3;
/// iter.next();
/// let third = iter.next().unwrap();
/// graph.at_mut(3).index = 4;
/// drop(iter);
/// third.index = 23;
/// ```
pub struct DfsMut<'a, T, A>
where A: AdjContainer<T>
{
    graph: *mut A,
    handled: Vec<bool>,
    stack: Vec<usize>,
    marker: PhantomData<&'a mut T>
}

impl<'a, T, A> DfsMut<'a, T, A>
where A: AdjContainer<T>
{
    pub(crate) fn new(graph: &'a mut GenericGraph<T, A>, index: usize) -> Self
    {
        let mut handled = vec![false; graph.vertex_count()];
        let mut stack: Vec<usize> = Vec::with_capacity(graph.vertex_count());

        if index < handled.len()
        {
            stack.push(index);
            handled[index] = true;
        }

        DfsMut{
            graph: graph.vertices.as_mut_ptr(),
            handled,
            stack,
            marker: PhantomData
        }
    }
}

impl<'a, T, A> Iterator for DfsMut<'a, T, A>
where A: AdjContainer<T> + 'a,
    T: 'a
{
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item>
    {
        let index = self.stack.pop()?;
        let container = unsafe{
            &mut *self.graph.add(index)
        };
        for &i in container.neighbors() {
            if !self.handled[i] {
                self.handled[i] = true;
                self.stack.push(i);
            }
        }

        Some(container.contained_mut())
    }
}

/// Depth first search Iterator with **index** of corresponding nodes
pub struct DfsWithIndex<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        vertices: &'a [A],
        handled: Vec<bool>,
        stack: Vec<usize>,
        marker: PhantomData<T>
}

impl<'a, T, A> DfsWithIndex<'a, T, A>
    where   T: 'a,
            A: AdjContainer<T>
{

    pub(crate) fn new(graph: &'a GenericGraph<T, A>, index: usize) -> Self {
        let mut handled: Vec<bool> = vec![false; graph.vertex_count()];
        let mut stack: Vec<usize> = Vec::with_capacity(graph.vertex_count());
        
        if index < handled.len()
        {
            stack.push(index);
            handled[index] = true;
        }
        
        DfsWithIndex {
            vertices: graph.vertices.as_slice(),
            handled,
            stack,
            marker: PhantomData
        }
    }

}

impl<'a, T, A> Iterator for DfsWithIndex<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        type Item = (usize, &'a T);

        fn next(&mut self) -> Option<Self::Item> {
            let index = self.stack.pop()?;
            let container = &self.vertices[index];
            for &i in container.neighbors() {
                if !self.handled[i] {
                    self.handled[i] = true;
                    self.stack.push(i);
                }
            }
            Some((index, container.contained()))
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.stack.len(), Some(self.vertices.len()))
        }
}

/// # Breadth first search Iterator with **index** and **depth** of corresponding nodes
/// * iterator returns tuple: `(index, node, depth)`, where `node` is what 
/// is contained at the vertex corresponding to the index, i.e., the `&T`
pub struct Bfs<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        vertices: &'a [A],
        handled: Vec<bool>,
        queue0: VecDeque<usize>,
        queue1: VecDeque<usize>,
        depth: usize,
        marker: PhantomData<T>
}

impl<'a, T, A> Bfs<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        pub(crate) fn new(graph: &'a GenericGraph<T, A>, index: usize) -> Self {
            let mut handled= vec![false; graph.vertex_count()];
            let mut queue0 = VecDeque::with_capacity(graph.vertex_count() / 2);
            let queue1 = VecDeque::with_capacity(graph.vertex_count() / 2);
            
            if index < graph.vertex_count() {
                queue0.push_back(index);
                handled[index] = true;
            }

            Bfs {
                vertices: graph.vertices.as_slice(),
                handled,
                queue0,
                queue1,
                depth: 0,
                marker: PhantomData
            }
        }

        pub(crate) fn reuse(&mut self, index: usize) {

            self.handled.fill(false);
 
            self.queue0.clear();
            self.queue1.clear();
            self.depth = 0;

            if index < self.vertices.len() {
                self.queue0.push_back(index);
                self.handled[index] = true;
            }
        }
}


/// # Iterator
/// - returns tuple: `(index, node, depth)`
impl<'a, T, A> Iterator for Bfs<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        type Item = (usize, &'a T, usize);
        fn next(&mut self) -> Option<Self::Item> {
            // if queue0 is not empty, take element from queue, push neighbors to other queue
            if let Some(index) = self.queue0.pop_front() {
                let container = &self.vertices[index];
                for &i in container.neighbors() {
                    if !self.handled[i] {
                        self.handled[i] = true;
                        self.queue1.push_back(i);
                    }
                }
                Some((index, container.contained(), self.depth))
            } else if self.queue1.is_empty() {
                None
            } else {
                std::mem::swap(&mut self.queue0, &mut self.queue1);
                self.depth += 1;
                self.next()
            }
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.queue0.len() + self.queue1.len(), Some(self.vertices.len()))
        }
}

/// # Breadth first search Iterator with **index** and **depth** of corresponding nodes
/// * iterator returns tuple: `(index, node, depth)`, where `node` is what 
/// is contained at the vertex corresponding to the index, i.e., the `&mut T`
pub struct BfsMut<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
        vertices: *mut A,
        handled: Vec<bool>,
        queue0: VecDeque<usize>,
        queue1: VecDeque<usize>,
        depth: usize,
        marker: PhantomData<&'a mut T>
}

impl<'a, T, A> BfsMut<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>
{
    pub(crate) fn new(graph: &'a mut GenericGraph<T, A>, index: usize) -> Self {
        let mut handled= vec![false; graph.vertex_count()];
        let mut queue0 = VecDeque::with_capacity(graph.vertex_count() / 2);
        let queue1 = VecDeque::with_capacity(graph.vertex_count() / 2);
        
        if index < graph.vertex_count() {
            queue0.push_back(index);
            handled[index] = true;
        }

        BfsMut {
            vertices: graph.vertices.as_mut_ptr(),
            handled,
            queue0,
            queue1,
            depth: 0,
            marker: PhantomData
        }
    }
}

/// # Iterator
/// - returns tuple: `(index, node, depth)`
impl<'a, T, A> Iterator for BfsMut<'a, T, A>
where   T: 'a,
        A: AdjContainer<T> + 'a
{
        type Item = (usize, &'a mut T, usize);
        fn next(&mut self) -> Option<Self::Item> {
            // if queue0 is not empty, take element from queue, push neighbors to other queue
            if let Some(index) = self.queue0.pop_front() {
                let container = unsafe{
                    &mut *self.vertices.add(index)
                };
                for &i in container.neighbors() {
                    if !self.handled[i] {
                        self.handled[i] = true;
                        self.queue1.push_back(i);
                    }
                }
                Some((index, container.contained_mut(), self.depth))
            } else if self.queue1.is_empty() {
                None
            } else {
                std::mem::swap(&mut self.queue0, &mut self.queue1);
                self.depth += 1;
                self.next()
            }
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.queue0.len() + self.queue1.len(), Some(self.handled.len()))
        }
}

// # Breadth first search Iterator with **index** and **depth** of corresponding nodes
/// * iterator returns tuple: `(index, node, depth)`
/// * iterator uses filter to decide, if a vertex should be considered
pub struct BfsFiltered<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>,
{
        vertices: &'a [A],
        handled: Vec<bool>,
        queue0: VecDeque<usize>,
        queue1: VecDeque<usize>,
        depth: usize,
        marker: PhantomData<T>
}

impl<'a, T, A>  BfsFiltered<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>,
        
{
    pub(crate) fn new<F>(graph: &'a GenericGraph<T, A>, index: usize, mut filter: F) -> Option<Self>
    where F: FnMut(&T, usize) -> bool,
    {
        if index >= graph.vertex_count() || !filter(graph.at(index), index) {
            return None;
        }
        let mut handled: Vec<_> =  graph.container_iter()
            .enumerate()
            .map(
                |(index, state)|
                {
                    !filter(state.contained(), index)
                }
            ).collect();
        let mut queue0 = VecDeque::with_capacity(graph.vertex_count() / 2);
        let queue1 = VecDeque::with_capacity(graph.vertex_count() / 2);
        
        queue0.push_back(index);
        handled[index] = true;

        Some(
            Self{
                handled,
                vertices: graph.vertices.as_slice(),
                queue0,
                queue1,
                depth: 0,
                marker: PhantomData
            }
        )
    }

    /// At any state of the iterator, you can check if a given, valid Vertex, was encountered yet
    /// * Note: That can mean, that said vertex is still in the queue
    /// * **panics** if index is out of bounds
    pub fn is_handled(&self, index: usize) -> bool
    {
        self.handled[index]
    }

    /// Efficiently reuse the iterator, now possibly starting at a new index
    /// * returns Err(self) without changing self, if index out of Bounds 
    /// or filter (filter_fn) of (vertex_at_index, index) is false
    /// * otherwise: prepares iterator to be used again and returns Ok(self)
    pub fn reuse<F>(mut self, index: usize, mut filter: F) -> Result<Self, Self>
    where F: FnMut(&T, usize) -> bool,
    {
        if index > self.vertices.len() || !filter(self.vertices[index].contained(), index) {
            return Err(self);
        }

        self.handled
            .iter_mut()
            .zip(
                self.vertices.iter()
            ).enumerate()
            .for_each(
                |(index, (handled_entry, container))|
                {
                    *handled_entry = !filter(container.contained(), index);
                }
            );

        for i in 0..self.handled.len() {
            self.handled[i] = false;
        }
        self.queue0.clear();
        self.queue1.clear();
        self.depth = 0;

        
        self.queue0.push_back(index);
        self.handled[index] = true;
        Ok(self)
    }
}

impl<'a, T, A> Iterator for BfsFiltered<'a, T, A>
where   T: 'a,
        A: AdjContainer<T>,
{
    type Item = (usize, &'a T, usize);
    fn next(&mut self) -> Option<Self::Item> {
        // if queue0 is not empty, take element from queue, push neighbors to other queue
        if let Some(index) = self.queue0.pop_front() {
            let container = self.vertices.get(index)?;
            for &i in container.neighbors() {
                if self.handled[i]
                {
                    continue;
                }
                
                self.handled[i] = true;
                self.queue1.push_back(i);
                
            }
            Some((index, container.contained(), self.depth))
        } else if self.queue1.is_empty() {
            None
        } else {
            std::mem::swap(&mut self.queue0, &mut self.queue1);
            self.depth += 1;
            self.next()
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.queue0.len() + self.queue1.len(), Some(self.vertices.len()))
    }
}