1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
//! # Small-world ensemble
//! In this specific small-world ensemble each vertex has at least degree 2.
//! That means, this small-world ensemble will never exhibit leaves.
//!
//! I implemented the same model, as I used in my paper
//! > Yannick Feld and Alexander K. Hartmann,
//! > "Large-deviations of the basin stability of power grids"
//! > *Chaos* **29**:113113 (2019), DOI: [10.1063/1.5121415](https://dx.doi.org/10.1063/1.5121415)
//!
//! where it is described in more detail.
//!
//! You can find a list of my publications on my [homepage](https://www.yfeld.de/#publications).
//! # Citations
//! > D. J. Watts and S. H. Strogatz, "Collective dynamics on 'small-world' networks,"
//!   Nature **393**, 440-442 (1998), DOI: [10.1038/30918](https://doi.org/10.1038/30918)
use {
    crate::{traits::*, sw_graph::*, iter::*},
    std::{borrow::Borrow, io::Write, num::*}
};

#[cfg(feature = "serde_support")]
use serde::{Serialize, Deserialize};

const ROOT_EDGES_PER_VERTEX: usize = 2;

/// # Returned by markov steps
/// * information about the performed step and possible errors
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub enum SwChangeState {
    /// ERROR adjecency list invalid?
    InvalidAdjecency,
    /// Can not add edge twice
    BlockedByExistingEdge,
    /// Nothing happend
    Nothing,
    /// old edge: (Rewire.0, Rewire.1), new edge (Rewire.0, Rewire.2)
    Rewire(usize, usize, usize),
    /// old edge: (Reset.0, Reset.1), new edge (Reset.0, Reset.2)
    Reset(usize, usize, usize),
    /// A GraphError occurred
    GError(GraphErrors),
}

impl SwChangeState {
    /// checks if self is `Nothing` variant
    pub fn is_nothing(&self) -> bool {
        matches!(self, SwChangeState::Nothing)
    }

    /// checks if self is `Nothing` or `BlockedByExistingEdge`
    pub fn is_nothing_or_blocked(&self) -> bool {
        matches!(self, SwChangeState::Nothing | SwChangeState::BlockedByExistingEdge)
    }

    /// result is equal to `!self.is_nothing_or_blocked()`
    pub fn not_nothing_or_blocked(&self) -> bool {

        !self.is_nothing_or_blocked()
    }

    /// # valid states:
    /// * `SwChangeState::Rewire(..)`
    /// * `SwChangeState::Reset(..)`
    /// * `SwChangeState::Nothing`
    /// * `SwChangeState::BlockedByExistingEdge`
    /// # invalid states:
    /// * `SwChangeState::InvalidAdjecency`
    /// * `SwChangeState::GError(..)`
    pub fn is_valid(&self) -> bool {
        match self {
            SwChangeState::Rewire(..) |
            SwChangeState::Reset(..) |
            SwChangeState::Nothing |
            SwChangeState::BlockedByExistingEdge => true,
            SwChangeState::InvalidAdjecency |
            SwChangeState::GError(..)            => false,
        }
    }
}

/// # Implements small-world graph ensemble
/// * for more details look at [documentation](index.html) of module `sw`
/// ## Sampling
/// * for markov steps look at [```MarkovChain``` trait](../sampling/traits/trait.MarkovChain.html)
/// * for simple sampling look at [```SimpleSample``` trait](./sampling/traits/trait.SimpleSample.html)
/// ## Other
/// * for topology functions look at [`GenericGraph`](../generic_graph/struct.GenericGraph.html)
/// * to access underlying topology or manipulate additional data look at [```WithGraph``` trait](../traits/trait.WithGraph.html)
/// * to use or swap the random number generator, look at [```HasRng``` trait](../traits/trait.HasRng.html)
/// # Minimal example
/// ```
/// use net_ensembles::{SwEnsemble, EmptyNode};
/// use net_ensembles::traits::*; // I recommend always using this
/// use rand_pcg::Pcg64; //or whatever you want to use as rng
/// use net_ensembles::rand::SeedableRng; // I use this to seed my rng, but you can use whatever
///
/// let rng = Pcg64::seed_from_u64(12);
///
/// // now create small-world ensemble with 200 nodes
/// // and a rewiring probability of 0.3 for each edge
/// let sw_ensemble = SwEnsemble::<EmptyNode, Pcg64>::new(200, 0.3, rng);
/// ```
/// # Simple sampling example
/// ```
/// use net_ensembles::{SwEnsemble, EmptyNode};
/// use net_ensembles::traits::*; // I recommend always using this
/// use rand_pcg::Pcg64; //or whatever you want to use as rng
/// use net_ensembles::rand::SeedableRng; // I use this to seed my rng, but you can use whatever
/// use std::fs::File;
/// use std::io::{BufWriter, Write};
///
/// let rng = Pcg64::seed_from_u64(122);
///
/// // now create small-world ensemble with 100 nodes
/// // and a rewiring probability of 0.3 for each edge
/// let mut sw_ensemble = SwEnsemble::<EmptyNode, Pcg64>::new(100, 0.3, rng);
///
/// // setup file for writing
/// let f = File::create("simple_sample_sw_example.dat")
///     .expect("Unable to create file");
/// let mut f = BufWriter::new(f);
/// f.write_all(b"#diameter bi_connect_max average_degree\n")
///     .unwrap();
///
/// // simple sample for 10 steps
/// sw_ensemble.simple_sample(10,
///     |ensemble|
///     {
///         let diameter = ensemble.graph()
///             .diameter()
///             .unwrap();
///
///         let bi_connect_max = ensemble.graph()
///             .clone()
///             .vertex_biconnected_components(false)[0];
///
///         let average_degree = ensemble.graph()
///             .average_degree();
///
///         write!(f, "{} {} {}\n", diameter, bi_connect_max, average_degree)
///             .unwrap();
///     }
/// );
///
/// // or just collect this into a vector to print or do whatever
/// let vec = sw_ensemble.simple_sample_vec(10,
///     |ensemble|
///     {
///         let diameter = ensemble.graph()
///             .diameter()
///             .unwrap();
///
///         let transitivity = ensemble.graph()
///             .transitivity();
///         (diameter, transitivity)
///     }
/// );
/// println!("{:?}", vec);
/// ```
/// # Save and load example
/// * only works if feature ```"serde_support"``` is enabled
/// * Note: ```"serde_support"``` is enabled by default
/// * I need the ```#[cfg(feature = "serde_support")]``` to ensure the example does compile if
///  you opt out of the default feature
/// * you can do not have to use ```serde_json```, look [here](https://docs.serde.rs/serde/) for more info
/// ```
/// use net_ensembles::traits::*; // I recommend always using this
/// use serde_json;
/// use rand_pcg::Pcg64;
/// use net_ensembles::{SwEnsemble, EmptyNode, rand::SeedableRng};
/// use std::fs::File;
///
/// let rng = Pcg64::seed_from_u64(95);
/// // create small-world ensemble
/// let sw_ensemble = SwEnsemble::<EmptyNode, Pcg64>::new(200, 0.3, rng);
///
/// #[cfg(feature = "serde_support")]
/// {
///     // storing the ensemble in a file:
///
///     let sw_file = File::create("store_SW.dat")
///           .expect("Unable to create file");
///
///     // or serde_json::to_writer(sw_file, &sw_ensemble);
///     serde_json::to_writer_pretty(sw_file, &sw_ensemble);
///
///     // loading ensemble from file:
///
///     let mut read = File::open("store_SW.dat")
///         .expect("Unable to open file");
///
///     let sw: SwEnsemble::<EmptyNode, Pcg64> = serde_json::from_reader(read).unwrap();
/// }
///
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct SwEnsemble<T: Node, R>
{
    graph: SwGraph<T>,
    r_prob: f64,
    rng: R,
}

impl <T, R> SwEnsemble<T, R>
    where   T: Node + SerdeStateConform,
            R: rand::Rng,
{
    /// # Initialize
    /// * create new SwEnsemble graph with `n` vertices
    /// * `r_prob` is probability of rewiring for each edge
    /// * `rng` is consumed and used as random number generator in the following
    /// * internally uses `SwGraph<T>::new(n)`
    pub fn new(n: usize, r_prob: f64, rng: R) -> Self {
        let mut graph = SwGraph::new(n);
        graph.init_ring_2();
        let mut result =
            SwEnsemble {
                graph,
                r_prob,
                rng,
            };
        result.randomize();
        result
    }

    /// # Initialize
    /// * create new SwEnsemble graph with `n` vertices
    /// * `r_prob` is probability of rewiring for each edge
    /// * `rng` is consumed and used as random number generator in the following
    /// * internally uses `SwGraph<T>::new(n)`
    /// * `distance`: Initial ring will be created by connecting every node to the neighbors which are not more than distance away 
    /// in the ring
    pub fn new_with_distance(n: usize, distance: NonZeroUsize, r_prob: f64, rng: R) -> Result<Self, GraphErrors>  {
        let mut graph = SwGraph::new(n);
        graph.init_ring(distance)?;
        let mut result =
            SwEnsemble {
                graph,
                r_prob,
                rng,
            };
        result.randomize();
        Ok(result)
    }

    /// # **Experimental!** Connect the connected components
    /// * resets edges, to connect the connected components
    /// * intended as starting point for a markov chain, if you require connected graphs
    /// * do **not** use this to independently (simple-) sample connected networks,
    ///   as this will skew the statistics 
    /// * **This is still experimental, this member might change the internal functionallity
    ///   resulting in different connected networks, without prior notice**
    /// * **This member might be removed in braking releases**
    pub fn make_connected(&mut self)
    {
        while !self.is_connected().unwrap_or(true){
            let (num, ids) = self.graph.connected_components_ids();
            let mut new_connection = vec![false; num];
            let vc_usize = self.vertex_count();

            for index in  0..vc_usize {
                let min = ids[index].min(ids[(index + 1) % vc_usize]);
                if !new_connection[min as usize] && ids[index] != ids[(index + 1) % vc_usize] {
                    // find out, where the desired edge is pointing to right now
                    new_connection[min as usize] = true;
                    let to = *self.graph.container_mut(index)
                        .iter_raw_edges()
                        .find(
                            |edge|
                            edge.originally_to().map(|c| c) == Some((index + 1) % vc_usize)
                        )
                        .unwrap()
                        .to();
                    self.graph.reset_edge(
                        index,
                        to
                    );
                }
            }
        }



    }

    /// draw number <= high but not index
    fn draw_remaining(&mut self, index: usize, high: usize) -> usize {
        let num = self.rng.gen_range(0..high);

        if num < index {
            num
        } else {
            num + 1
        }
    }

    /// edge `(index0, index1)` has to be rooted at `index0`
    fn randomize_edge(&mut self, index0: usize, index1: usize) -> SwChangeState {
        let vertex_count = self.graph.vertex_count();

        if self.rng.gen::<f64>() <= self.r_prob {
            let rewire_index = self.
            draw_remaining(index0, vertex_count - 1);
            self.graph.rewire_edge(index0, index1, rewire_index)
        }else {
            self.graph.reset_edge(index0, index1)
        }
    }

    /// sanity check performed in debug mode
    fn debug_error_check(state: SwChangeState) -> bool {
        match state {
            SwChangeState::GError(_)                => panic!("GError"),
            SwChangeState::InvalidAdjecency         => panic!("InvalidAdjecency"),
            _                                       => true
        }
    }

    /// * draws random edge `(i0, i1)`
    /// * edge rooted at `i0`
    /// * uniform probability
    /// * result dependent on order of adjecency lists
    /// * `mut` because it uses the `rng`
    pub fn draw_edge(&mut self) -> (usize, usize) {
        // each vertex has the same number of root nodes
        // the root nodes have an order -> adjecency lists
        let rng_num = self.rng.gen_range(0..self.graph.edge_count());
        let v_index = rng_num / ROOT_EDGES_PER_VERTEX;
        let e_index = rng_num % ROOT_EDGES_PER_VERTEX;

        let mut iter = self.graph
            .container(v_index)
            .iter_raw_edges()
            .filter(|x| x.is_root());

        let &to = iter
            .nth(e_index)
            .unwrap()
            .to();

        (v_index, to)
    }

    /// * returns rewiring probability
    pub fn r_prob(&self) -> f64 {
        self.r_prob
    }

    /// * set new value for rewiring probability
    /// ## Note
    /// * will only set the value, which will be used from now on
    /// * if you also want to create a new sample, call `randomize` afterwards
    pub fn set_r_prob(&mut self, r_prob: f64) {
        self.r_prob = r_prob;
    }

    /// * retuns `GenericGraph::contained_iter_neighbors_mut`
    /// * otherwise you would not have access to this function, since no mut access to
    ///   the graph is allowed
    pub fn contained_iter_neighbors_mut(&mut self, index: usize) -> NContainedIterMut<T, SwContainer<T>, IterWrapper>
    {
            self.graph.contained_iter_neighbors_mut(index)
    }
}

impl<T, R> GraphIteratorsMut<T, SwGraph<T>, SwContainer<T>> for SwEnsemble<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
{
    fn contained_iter_neighbors_mut(&mut self, index: usize) ->
        NContainedIterMut<T, SwContainer<T>, IterWrapper>
    {
        self.graph.contained_iter_neighbors_mut(index)
    }

    fn contained_iter_neighbors_mut_with_index(&mut self, index: usize)
        -> INContainedIterMut<'_, T, SwContainer<T>>
    {
        self.graph.contained_iter_neighbors_mut_with_index(index)
    }

    fn contained_iter_mut(&mut self) ->  ContainedIterMut<T, SwContainer<T>> {
        self.graph.contained_iter_mut()
    }
}


impl<T, R> WithGraph<T, SwGraph<T>> for SwEnsemble<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
{
    fn at(&self, index: usize) -> &T {
        self.graph.at(index)
    }

    fn at_mut(&mut self, index: usize) -> &mut T{
        self.graph.at_mut(index)
    }

    fn graph(&self) -> &SwGraph<T> {
        self.borrow()
    }

    /// # Sort adjecency lists
    /// If you depend on the order of the adjecency lists, you can sort them
    /// # Performance
    /// * internally uses [pattern-defeating quicksort](https://github.com/orlp/pdqsort)
    /// as long as that is the standard
    /// * sorts an adjecency list with length `d` in worst-case: `O(d log(d))`
    /// * is called for each adjecency list, i.e., `self.vertex_count()` times
    fn sort_adj(&mut self) {
        self.graph.sort_adj();
    }
}


impl<T, R> AsRef<SwGraph<T>> for SwEnsemble<T, R>
where T: Node,
      R: rand::Rng
{
    #[inline]
    fn as_ref(&self) -> &SwGraph<T>{
        &self.graph
    }
}

impl<T, R> Borrow<SwGraph<T>> for SwEnsemble<T, R>
where T: Node,
      R: rand::Rng
{
    #[inline]
    fn borrow(&self) -> &SwGraph<T> {
        &self.graph
    }
}

impl<T, R> HasRng<R> for SwEnsemble<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
{
    /// # Access RNG
    /// If, for some reason, you want access to the internal random number generator: Here you go
    fn rng(&mut self) -> &mut R {
        &mut self.rng
    }

    /// # Swap random number generator
    /// * returns old internal rng
    fn swap_rng(&mut self, rng: &mut R) {
        std::mem::swap(&mut self.rng, rng);
    }
}

impl<T, R> SimpleSample for SwEnsemble<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
{
    /// # Randomizes the edges according to small-world model
    /// * this is used by `SwEnsemble::new` to create the initial topology
    /// * you can use this for sampling the ensemble
    /// * runs in `O(vertices)`
    fn randomize(&mut self){
        let count = self.graph
            .vertex_count();

        for i in 0..count {
            let vertex = self.graph
                .get_mut_unchecked(i);

            let mut root_iter = vertex
                .iter_raw_edges()
                .filter(|edge| edge.is_root())
                .map(|edge| edge.to());

            let first   = *root_iter.next().unwrap();
            let second  = *root_iter.next().unwrap();
            debug_assert!(root_iter.next().is_none());

            let state = self.randomize_edge(i, first);
            debug_assert!(Self::debug_error_check(state));

            let state = self.randomize_edge(i, second);
            debug_assert!(Self::debug_error_check(state));

        }
    }
}

impl<T, R> MarkovChain<SwChangeState, SwChangeState> for SwEnsemble<T, R>
where   T: Node + SerdeStateConform,
        R: rand::Rng
        {

    /// # Markov step
    /// * use this to perform a markov step
    /// * keep in mind, that it is not unlikely for a step to do `Nothing` as it works by
    /// drawing an edge and then reseting it with `r_prob`, else the edge is rewired
    /// * result `SwChangeState` can be used to undo the step with `self.undo_step(result)`
    /// * result should never be `InvalidAdjecency` or `GError` if used on a valid graph
    fn m_step(&mut self) -> SwChangeState {
        let edge = self.draw_edge();
        self.randomize_edge(edge.0, edge.1)
    }

    /// # Undo a markov step
    /// * *rewires* edge to old state
    /// * Note: cannot undo `InvalidAdjecency` or `GError`,
    /// will just return `InvalidAdjecency` or `GError` respectively
    /// * returns result of *rewire*
    /// ## Important:
    /// Restored graph is the same as before the random step **except** the order of nodes
    /// in the adjacency list might be shuffled!
    fn undo_step(&mut self, step: &SwChangeState) -> SwChangeState {
        match step {
            SwChangeState::Rewire(root, old_to, new_to) |
            SwChangeState::Reset (root, old_to, new_to)  => self.graph.rewire_edge(*root, *new_to, *old_to), // swap old to and new to in rewire
            SwChangeState::Nothing |
            SwChangeState::BlockedByExistingEdge |
            SwChangeState::InvalidAdjecency |
            SwChangeState::GError(_)                     => *step
        }
    }

    /// # Undo a Monte Carlo step
    /// * *rewires* edge to old state
    /// * **panics** if you try to undo `InvalidAdjecency` or `GError`
    /// * **panics** if rewire result (`SwChangeState`) is invalid (i.e. `!result.is_valid()`)
    /// ## Important:
    /// Restored graph is the same as before the random step **except** the order of nodes
    /// in the adjacency list might be shuffled!
    fn undo_step_quiet(&mut self, step: &SwChangeState) {
        match step {
            SwChangeState::Rewire(root, old_to, new_to) |
            SwChangeState::Reset (root, old_to, new_to)  => {
                // swap old to and new to in rewire to undo step
                let state = self.graph.rewire_edge(*root, *new_to, *old_to);
                if !state.is_valid() {
                    panic!("undo step - rewire error: {:?}", state);
                }
            },
            SwChangeState::Nothing |
            SwChangeState::BlockedByExistingEdge => (),
            SwChangeState::InvalidAdjecency      => panic!("undo_step - {:?} - corrupt step?", step),
            SwChangeState::GError(error)         => panic!("undo_step - GError {} - corrupt step?", error)
        }
    }
}


#[cfg(test)]
mod tests {
    use super::*;
    use crate::EmptyNode;
    use rand_pcg::Pcg64;
    use rand::SeedableRng;

    #[test]
    #[ignore]
    fn sw_make_connected() {
        let rng = Pcg64::seed_from_u64(7526);
        let mut e = SwEnsemble::<EmptyNode, Pcg64>::new(20, 0.0, rng);
        e.set_r_prob(0.2);

        // the following code creates 3 connected components
        while e.is_connected().unwrap(){
            e.m_steps_quiet(10);
        }

        let mut comp = e.connected_components();
        let mut steps = Vec::new();
        while comp.len() < 3{
            e.m_steps(10, &mut steps);
            comp = e.connected_components();

            if  comp.len() < 2{
                e.undo_steps_quiet(&steps);
            }

        }

        // now I reconnect them
        e.make_connected();
        assert!(e.is_connected().unwrap());
    }


}


impl<T, R> Dot for SwEnsemble<T, R>
where T: Node
{
    fn dot_from_indices<F, W, S1, S2>(&self, writer: W, dot_options: S1, f: F)
        -> Result<(), std::io::Error>
    where
        S1: AsRef<str>,
        S2: AsRef<str>,
        W: Write,
        F: FnMut(usize) -> S2 {
        self.graph
            .dot_from_indices(writer, dot_options, f)
    }

    fn dot<S, W>(&self, writer: W, dot_options: S) -> Result<(), std::io::Error>
    where
        S: AsRef<str>,
        W: Write {
        self.graph
            .dot(writer, dot_options)
    }

    fn dot_string<S>(&self, dot_options: S) -> String
    where
        S: AsRef<str> {
        self.graph.dot_string(dot_options)
    }

    fn dot_string_from_indices<F, S1, S2>(&self, dot_options: S1, f: F) -> String
    where
        S1: AsRef<str>,
        S2: AsRef<str>,
        F: FnMut(usize) -> S2 {
        self.graph
            .dot_string_from_indices(dot_options, f)
    }

    fn dot_string_with_indices<S>(&self, dot_options: S) -> String
    where
        S: AsRef<str> {
        self.graph
            .dot_string_with_indices(dot_options)
    }

    fn dot_with_indices<S, W>(
            &self, writer: W,
            dot_options: S
        ) -> Result<(), std::io::Error>
    where
        S: AsRef<str>,
        W: Write {
        self.graph
            .dot_with_indices(writer, dot_options)
    }
}

impl<T, R> Contained<T> for SwEnsemble<T, R>
where T: Node
{
    fn get_contained(&self, index: usize) -> Option<&T> {
        self.graph.get_contained(index)
    }

    fn get_contained_mut(&mut self, index: usize) -> Option<&mut T> {
        self.graph.get_contained_mut(index)
    }

    unsafe fn get_contained_unchecked(&self, index: usize) -> &T {
        self.graph.get_contained_unchecked(index)
    }

    unsafe fn get_contained_unchecked_mut(&mut self, index: usize) -> &mut T {
        self.graph.get_contained_unchecked_mut(index)
    }
}