1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use{
    crate::*,
    std::{cmp::*, convert::*, f64::consts::LOG10_E}
};

#[derive(Debug)]
/// Possible errors that can occur during gluing together
/// WangLandau intervals or Entropic Sampling intervals
pub enum GlueErrors{
    /// `original_hist.borders_clone()` failed
    BorderCreation(HistErrors),
    /// Nothing to be glued, glue interval list was empty
    EmptyList,
    /// Binary search failed - PartialOrd::partial_cmp returned None
    BinarySearch,
    /// # Glue interval and intervals to be glued do not match
    /// * Likely `original_hist` is to small
    OutOfBounds,
    /// The intervals need to overlap, otherwise no gluing can occur
    NoOverlap,
}

impl From<HistErrors> for GlueErrors{
    fn from(e: HistErrors) -> Self {
        GlueErrors::BorderCreation(e)
    }
}

/// # Normalize log10 probability density
/// * input: Slice containing log10 of (non normalized) probability density
/// * afterwards, it will be normalized, i.e., sum_i 10^log10_density\[i\] ≈ 1
pub fn norm_log10_sum_to_1(log10_density: &mut[f64]){
    // prevent errors due to small or very large numbers
    subtract_max(log10_density);

    // calculate actual sum in non log space
    let sum = log10_density.iter()
        .fold(0.0, |acc, &val| {
            if val.is_finite(){
               acc +  10_f64.powf(val)
            } else {
                acc
            }
        }  
    );
    
    let sum = sum.log10();
    log10_density.iter_mut()
        .for_each(|val| *val -= sum);
}

/// Glues together probabilities
/// size is original_hist.bin_count()
pub(crate) fn glue(size: usize, log10_vec: &[Vec<f64>], left_list: &[usize], right_list: &[usize]) -> Result<Vec<f64>, GlueErrors>
{
    let mut glue_log_density = vec![f64::NAN; size];


    // init - first interval can be copied for better performance
    let first_log = match log10_vec.first(){
        Some(interval) => interval.as_slice(),
        None => return Err(GlueErrors::EmptyList)
    };
    let l = *left_list.first().unwrap();
    let r = *right_list.first().unwrap();
    if r >= glue_log_density.len() {
        return Err(GlueErrors::OutOfBounds);
    }
    glue_log_density[l..=r].copy_from_slice(first_log);
    let mut glue_count = vec![0_usize; glue_log_density.len()];
    #[allow(clippy::needless_range_loop)]
    for i in l..=r {
        glue_count[i] = 1;
    }

    for (i, log_vec) in log10_vec.iter().enumerate().skip(1)
    {
        let left = left_list[i];
        let right = right_list[i];
        glue_log_density[left..=right].iter_mut()
            .zip(glue_count[left..=right].iter_mut())
            .zip(log_vec.iter())
            .for_each(|((res, count), &val)| {
                *count += 1;
                if res.is_finite(){
                    *res += val;
                } else {
                    *res = val;
                }
            });
    }

    glue_log_density.iter_mut()
        .zip(glue_count.iter())
        .for_each(|(log, &count)| {
            if count > 0 {
                *log /= count as f64;
            }
        });
    
    Ok(glue_log_density)
}

pub(crate) fn height_correction(log10_vec: &mut [Vec<f64>], z_vec: &[f64]){
    log10_vec.iter_mut()
        .skip(1)
        .zip(z_vec.iter())
        .for_each( |(vec, &z)|
            vec.iter_mut()
                .for_each(
                    |val| 
                    {
                        *val += z;
                    }
                )
        );
}

pub(crate) fn calc_z(log10_vec: &[Vec<f64>], left_list: &[usize], right_list: &[usize]) -> Result<Vec<f64>, GlueErrors>
{
    let mut z_vec = Vec::with_capacity(left_list.len() - 1);
    for i in 1..left_list.len()
    {
            let left_prev = left_list[i - 1];
            let left = left_list[i];
            let l_m = left.max(left_prev);
            let right_prev = right_list[i - 1];
            let right = right_list[i];
            let r_m = right.min(right_prev);
            if l_m >= r_m {
                return Err(GlueErrors::NoOverlap);
            }
            let overlap_size = r_m - l_m;
            let (prev, cur) = if left_prev >= left{
                let diff = left_prev - left;
                (
                    &log10_vec[i - 1][0..=overlap_size],
                    &log10_vec[i][diff..=diff+overlap_size]
                )
            } else {
                let diff = left - left_prev;
                (
                    &log10_vec[i - 1][diff..=diff+overlap_size],
                    &log10_vec[i][0..=overlap_size]
                )
            };
            let sum = prev.iter().zip(cur.iter())
                .fold(0.0, |acc, (&p, &c)| p - c + acc);
            let mut z = sum / prev.len() as f64;
            // also correct for adjustment of prev
            if let Some(val) = z_vec.last() {
                z += val;
            }
            z_vec.push(z);
    }
    Ok(z_vec)
}

pub(crate) fn get_index<T>(val: &T, borders: &[T]) -> Result<usize, GlueErrors>
where 
    T: PartialOrd
{
    let mut error = false;
    let index = borders.binary_search_by(
        |probe|{
            probe.partial_cmp(val).unwrap_or_else(|| {
                    error = true;
                    Ordering::Equal
                }
            )
        }
    );
    if error {
        return Err(GlueErrors::BinarySearch);
    }
    index.map_err(|_| GlueErrors::BinarySearch)
}

/// calles subtract_max on all contained vectors
pub(crate) fn inner_subtract_max(log10_vec: &mut [Vec<f64>])
{
    log10_vec.iter_mut()
        .for_each(
        |v| 
        {
            subtract_max(v);
        }
    );
}

/// subtracts maximum, if it is finite
pub(crate) fn subtract_max(list: &mut[f64]) -> f64
{
    let max = list
        .iter()
        .copied()
        .fold(f64::NAN, f64::max);

    if max.is_finite() {
        list.iter_mut()
            .for_each(|val| *val -= max);
    }
    max
}

pub(crate) fn ln_to_log10(slice: &mut [f64])
{
    slice.iter_mut()
            .for_each(|val| *val *= LOG10_E);
}

pub(crate) fn log10_to_ln(slice: &mut [f64])
{
    slice.iter_mut()
        .for_each(|val| *val /= LOG10_E);
}