Expand description

Example Coin flips

Lets assume we do n Coinflips and want to measure the probability for the number of times, this results in Head. This means, the number of times the coin flip returned head is the energy

Of course, for this example there is an analytic solution.

For the implementation of the coin flip sequence and Markov chain of it, please look in the source code

Now A detailed example for large deviation simulations with comparison to analytical results

The files created in this example can be found below


use rand::SeedableRng;
use rand_pcg::Pcg64;
use sampling::{*, examples::coin_flips::*};
use std::fs::File;
use std::io::{BufWriter, Write};
use statrs::distribution::{Binomial, Discrete};

// length of coin flip sequence
let n = 20;
let interval_count = 3;
 
// create histogram. The result of our `energy` (number of heads) can be anything between 0 and n
let hist = HistUsizeFast::new_inclusive(0, n).unwrap();
 
// now the overlapping histograms for sampling
// lets create 3 histograms. The parameter Overlap should be larger than 0. Normally, 1 is sufficient
let hist_list = hist.overlapping_partition(interval_count, 1).unwrap();
// alternatively you could also create the histograms in the desired interval. 
// Just make sure, that they overlap
 
// create rng to seed all other rngs
let mut rng = Pcg64::seed_from_u64(834628956578);
 
// now create ensembles (could be combined with wl creation)
// note: You could also create one ensemble and clone it instead of creating different ones
let ensembles: Vec<_> = (0..interval_count).map(|_| {
    CoinFlipSequence::new(
        n,
        Pcg64::from_rng(&mut rng).unwrap()
    )
}).collect();
 
// Now the Wang Landau simulation. First create the struct 
// (here as Vector, since we want to use 3 overlapping intervals)
let mut wl_list: Vec<_> = ensembles.into_iter()
    .zip(hist_list.into_iter())
    .map(|(ensemble, histogram)| {
        WangLandau1T::new(
            0.00001, // arbitrary threshold for `log_f`(see paper), 
                     // you have to try what is good for your model
            ensemble,
            Pcg64::from_rng(&mut rng).unwrap(),
            1,  // stepsize 1 is sufficient for this problem
            histogram,
            100 // every 100 steps: check if WL can refine factor f
        ).unwrap()
    }).collect();
 
// Now we have to initialize the wl with a valid state
// as the simulation has to start in the interval one wants to measure.
// Since the energy landscape is quite simple, here a greedy approach is good enough.
 
wl_list.iter_mut()
    .for_each(|wl|{
        wl.init_greedy_heuristic(
            |coin_seq| Some(coin_seq.head_count()),
            Some(10_000) // if no valid state is found after 10_000 
                         // this returns an Err. If you do not want a step limit,
                         // you can use None here
        ).expect("Unable to find valid state within 10_000 steps!");
    });
 
// Now our ensemble is initialized. Time for the Wang Landau Simulation. 
// You can do that in different ways.
// I will show this by doing it differently for our three intervals
 
// First, the simplest one. Just simulate until the threshold for `log_f` is reached
wl_list[0].wang_landau_convergence(
    |coin_seq| Some(coin_seq.head_count())
);
 
// Secondly, I only have a limited amount of time.
// Lets say, I have 1 minute at most.
let start_time = std::time::Instant::now();
wl_list[1].wang_landau_while(
    |coin_seq| Some(coin_seq.head_count()),
    |_| start_time.elapsed().as_secs() <= 60
);
 
// Or lets say, I want to limit the number of steps to 100_000
wl_list[2].wang_landau_while(
    |coin_seq| Some(coin_seq.head_count()),
    |state| state.step_counter() <= 100_000 
);
 
// Now, lets see if our last two simulations did indeed finish:
// This one did
assert!(wl_list[1].is_finished());
// This simulation did not finish
assert!(!wl_list[2].is_finished());
 
// If a simulation did not finish, you could, e.g., store the state (`wl_list[2]`) using serde.
// Then you could continue the simulation later on.
// I recommend the crate `bincode` for storing
 
// lets resume the simulation for now
wl_list[2].wang_landau_convergence(
    |coin_seq| Some(coin_seq.head_count())
);
// it finished
assert!(wl_list[2].is_finished());
 
// Since our simulations did all finish, lets see what our distribution looks like
// Lets glue them together. We use our original histogram for that.
let mut glue_job = 
    GlueJob::new_from_slice(&wl_list, LogBase::Base10);
let mut glued = glue_job
    .average_merged_and_aligned()
    .expect("Unable to glue results. Look at error message");

// now, lets print our result
glued.set_stat_write_verbosity(GlueWriteVerbosity::AccumulatedStats);
glued.write(std::io::stdout()).unwrap();
 
// or store it into a file
let file = File::create("coin_flip_log_density.dat").unwrap();
let buf = BufWriter::new(file);
glued.write(buf).unwrap();
 
// now, lets check if our results are actually any good.
// lets compare that to the analytical result
 
// Since the library I am going to use lets me directly calculate the natural
// logaritm of the probability, I now switch the base of our glue results
glued.switch_base();
let ln_prob = glued.glued();
 
// Then create the `true` results:
let binomial = Binomial::new(0.5, n as u64).unwrap();
 
let ln_prob_true: Vec<_> = (0..=n)
    .map(|k| binomial.ln_pmf(k as u64))
    .collect();
 
// lets write that in a file, so we can use gnuplot to plot the result
let comp_file = File::create("coin_flip_compare.dat").unwrap();
let mut buf = BufWriter::new(comp_file);
 
// lets also calculate the maximum difference between the two solutions
let mut max_ln_dif = std::f64::NEG_INFINITY;
let mut max_dif = std::f64::NEG_INFINITY;
 
writeln!(buf, "#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif").unwrap();
for (index, (numeric, analytic)) in ln_prob.iter().zip(ln_prob_true.iter()).enumerate()
{
    let ln_dif = numeric - analytic;
    max_ln_dif = ln_dif.abs().max(max_ln_dif);
    let dif = numeric.exp() - analytic.exp();
    max_dif = dif.abs().max(max_dif);
    writeln!(buf, "{} {:e} {:e} {:e} {:e}", index, numeric, analytic, ln_dif, dif).unwrap();
}
 
println!("Max_ln_dif = {}", max_ln_dif);
println!("Max_dif = {}", max_dif);
 
// in this case, the max difference of the natural logarithms 
// of the probabilities is smaller than 0.03
assert!(max_ln_dif < 0.03);
// and the max absolute difference is smaller than 0.0009
assert!(max_dif < 0.0009);
 
// But we can do better. Lets refine the results with entropic sampling
// first, convert the wl simulations in entropic sampling simulations
let mut entropic_list: Vec<_> = wl_list
    .into_iter()
    .map(|wl| EntropicSampling::from_wl(wl).unwrap())
    .collect();
 
 
// Now, while doing that, lets also create a heatmap.
// Lets say, we want to see, how the number of times `Head` occurred in the sequence 
// correlates to the maximum number of `Heads` in a row in that sequence.
 
// In this case, the heatmap is symmetric and we already have a histogram of correct sice
let mut heatmap = HeatmapU::new(
    hist.clone(),
    hist.clone()
);
 
entropic_list.iter_mut()
    .for_each(|entr|{
        entr.entropic_sampling(
            |coin_seq| Some(coin_seq.head_count()),
            |state| {
                let head_count = *state.energy();
                let heads_in_row = state.ensemble().max_heads_in_a_row();
                heatmap.count(head_count, heads_in_row)
                    .expect("Value outside heatmap?");
            }
        )
    });
 
// Now, lets see our refined results:
let mut glue_job = 
    GlueJob::new_from_slice(&entropic_list, LogBase::Base10);
// Note that the library also allows you to mix REWL, REES, Entropic and Wanglandau simulations
// with the GlueJob, if you deem it necessary. We won't do that here though
 
// after creating the GlueJob we need to do the merging:
let mut glued = glue_job
    .average_merged_and_aligned()
    .expect("Unable to glue results. Look at error message");
// to also write Statistics of the simulation as comments
glued.set_stat_write_verbosity(GlueWriteVerbosity::IntervalStatsAndAccumulatedStats);
 
// lets store our result
let file = File::create("coin_flip_log_density_entropic.dat").unwrap();
let buf = BufWriter::new(file);
glued.write(buf).unwrap();
 
// now, lets compare with the analytical results again
// Again, calculate to base e
// (Note that we could have calculated to base e directly by choosing so in the GlueJob)
glued.switch_base();
let ln_prob = glued.glued();
 
 
// lets write that in a file, so we can use gnuplot to plot the result
let comp_file = File::create("coin_flip_compare_entr.dat").unwrap();
let mut buf = BufWriter::new(comp_file);
 
// lets also calculate the maximum difference between the two solutions
let mut max_ln_dif = std::f64::NEG_INFINITY;
let mut max_dif = std::f64::NEG_INFINITY;
 
writeln!(buf, "#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif").unwrap();
for (index, (numeric, analytic)) in ln_prob.iter().zip(ln_prob_true.iter()).enumerate()
{
    let ln_dif = numeric - analytic;
    max_ln_dif = ln_dif.abs().max(max_ln_dif);
    let dif = numeric.exp() - analytic.exp();
    max_dif = dif.abs().max(max_dif);
    writeln!(buf, "{} {:e} {:e} {:e} {:e}", index, numeric, analytic, ln_dif, dif).unwrap();
}
 
println!("Max_ln_dif = {}", max_ln_dif);
println!("Max_dif = {}", max_dif);
 
// in this case, the max difference of the natural logarithms 
//of the probabilities is smaller than 0.026
assert!(max_ln_dif < 0.026);
// and the max absolut difference is smaller than 0.0007
assert!(max_dif < 0.0007);
 
// That would be the final result for our probability 
// density than. As you can see, it is very very 
// close to the analytical result.
 
// Now, lets see, how our heatmap looks:
let mut settings = GnuplotSettings::new();
settings.x_label("#Heads")
    .y_label("Max heads in row")
    .terminal(GnuplotTerminal::PDF("heatmap_coin_flips".to_owned()));
 
// lets normalize coloumwise
// This way, the scale of our heatmap tells us the conditional probability
// P(Number of heads in a rom | number of heads) of how many heads in a row were
// part of that sequence given the total number of heads that occurred in the sequence
let heatmap = heatmap.heatmap_normalized_columns();
 
// now create gnuplot file
let file = File::create("coin_heatmap.gp").unwrap();
let buf = BufWriter::new(file);
heatmap.gnuplot(
    buf,
    settings
).unwrap();
 
// now you can use gnuplot to plot the heatmap

Created files:

  • coin_flip_log_density.dat
#bin log_merged interval_0 interval_1 interval_2
#log: Base10
#Accumulated Stats of 3 Intervals
#Worst log progress: 0.00001 - out of 3 intervals that tracked log progress
#WangLandau1T contributed 3 intervals
#TOTAL: 1892678 accepted and 1407322 rejected steps, which makes a total of 3300000 steps
#TOTAL acceptance rate 0.5735387878787879
#TOTAL rejection rate 0.42646121212121213
0 -6.031606841072606e0 -6.0298907440626826e0 NaN NaN
1 -4.728485280490379e0 -4.726769183480456e0 NaN NaN
2 -3.7500990622715635e0 -3.74838296526164e0 NaN NaN
3 -2.9668930048460895e0 -2.965176907836166e0 NaN NaN
4 -2.339721588163688e0 -2.3380054911537647e0 NaN NaN
5 -1.8365244111917054e0 -1.8339599228584254e0 -1.8356567055051392e0 NaN
6 -1.4371802248730712e0 -1.4356118452020317e0 -1.4353164105242642e0 NaN
7 -1.1351008012679982e0 -1.1338310003177616e0 -1.1329384081983884e0 NaN
8 -9.233969878866752e-1 -9.223363651917955e-1 -9.210254165617083e-1 NaN
9 -7.962413727681732e-1 -7.946574743680577e-1 -7.943930771484421e-1 NaN
10 -7.528173091050847e-1 -7.519592606001231e-1 -7.530258506002528e-1 -7.483185250851084e-1
11 -7.942713970200067e-1 NaN -7.946314602982628e-1 -7.904791397219041e-1
12 -9.171173964543223e-1 NaN -9.17538022792398e-1 -9.132645760964001e-1
13 -1.1271626249139948e0 NaN -1.1256565589949121e0 -1.125236496813231e0
14 -1.430004495200477e0 NaN -1.4270017524820386e0 -1.4295750438990686e0
15 -1.8307880991746777e0 NaN -1.8235820703886783e0 -1.8345619339408306e0
16 -2.3447129767461368e0 NaN NaN -2.342996879736213e0
17 -2.974429977113245e0 NaN NaN -2.972713880103322e0
18 -3.7503197785367197e0 NaN NaN -3.7486036815267965e0
19 -4.732341369591395e0 NaN NaN -4.730625272581472e0
20 -6.014059503852461e0 NaN NaN -6.012343406842537e0
  • coin_flip_compare.dat
#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif
0 -1.388828799905469e1 -1.3862943611198906e1 -2.5344387855783523e-2 -2.3866572408958168e-8
1 -1.0887739719298917e1 -1.0867211337644916e1 -2.0528381654001393e-2 -3.875562455014197e-7
2 -8.634922198037453e0 -8.615919539038421e0 -1.9002658999031752e-2 -3.4107369181183742e-6
3 -6.831523605466917e0 -6.824160069810366e0 -7.363535656550901e-3 -7.976150535885006e-6
4 -5.387408050662062e0 -5.377241086874042e0 -1.0166963788019956e-2 -4.673898610979728e-5
5 -4.228753732129688e0 -4.214090277068356e0 -1.4663455061331376e-2 -2.152285704062097e-4
6 -3.309229761738564e0 -3.2977995451941995e0 -1.1430216544364491e-2 -4.201057612779821e-4
7 -2.6136661840452895e0 -2.6046523646342594e0 -9.013819411030077e-3 -6.633868338237203e-4
8 -2.126200139223462e0 -2.119144548852554e0 -7.0555903709079715e-3 -8.446355834740987e-4
9 -1.8334135153611106e0 -1.8314624764007785e0 -1.9510389603321077e-3 -3.122110722084126e-4
10 -1.7334259136932588e0 -1.736152296596451e0 2.7263829031922704e-3 4.810360764700705e-4
11 -1.8288774785698227e0 -1.8314624764007768e0 2.5849978309540056e-3 4.145983618321636e-4
12 -2.1117408456012328e0 -2.1191445488525558e0 7.403703251323002e-3 8.927398170218287e-4
13 -2.5953878575070033e0 -2.6046523646342594e0 9.264507127256127e-3 6.880967171132152e-4
14 -3.2927070335630937e0 -3.2977995451942013e0 5.092511631107577e-3 1.8872184723020546e-4
15 -4.215545385590517e0 -4.214090277068356e0 -1.4551085221610194e-3 -2.1499249324725273e-5
16 -5.398901147605349e0 -5.377241086874038e0 -2.1660060731310438e-2 -9.900533675925687e-5
17 -6.848878125455579e0 -6.824160069810366e0 -2.47180556452129e-2 -2.6543784456516638e-5
18 -8.635430416019382e0 -8.61591953903842e0 -1.9510876980962877e-2 -3.5010687071566015e-6
19 -1.0896618692580171e1 -1.0867211337644916e1 -2.940735493525537e-2 -5.52733731038154e-7
20 -1.3847883761949843e1 -1.3862943611198906e1 1.5059849249063006e-2 1.4470882595462752e-8
  • coin_flip_log_density_entropic.dat
  • If you want to plot with gnuplot:
set format y "10^{%.0f}"
set ylabel 'P(Heads)'
set xlabel '#Heads'
p "coin_flip_log_density_entropic.dat" u 1:2 t 'P(E), normalized',\
   for[i=3:5] "" u 1:i t "glued overlapping interval"
  • and here is the file the program has outputted: coin_flip_log_density_entropic.dat
  • note that the verbosity was set to GlueWriteVerbosity::IntervalStatsAndAccumulatedStats
#bin log_merged interval_0 interval_1 interval_2
#log: Base10
#Interval Stats
#Stats for Interval 0
#Simulated via: "Entropic"
#progress MissingSteps(0)
#created from a single walker
#had 549335 accepted and 550665 rejected steps, which makes a total of 1100000 steps
#acceptance rate 0.49939545454545453
#rejection rate 0.5006045454545455
#
#Stats for Interval 1
#Simulated via: "Entropic"
#progress MissingSteps(0)
#created from a single walker
#had 799683 accepted and 300317 rejected steps, which makes a total of 1100000 steps
#acceptance rate 0.7269845454545455
#rejection rate 0.27301545454545456
#
#Stats for Interval 2
#Simulated via: "Entropic"
#progress MissingSteps(0)
#created from a single walker
#had 548083 accepted and 551917 rejected steps, which makes a total of 1100000 steps
#acceptance rate 0.4982572727272727
#rejection rate 0.5017427272727273
#
#Accumulated Stats of 3 Intervals
#Worst missing steps progress: 0 - out of 3 intervals that tracked missing steps progress
#Entropic contributed 3 intervals
#TOTAL: 1897101 accepted and 1402899 rejected steps, which makes a total of 3300000 steps
#TOTAL acceptance rate 0.574879090909091
#TOTAL rejection rate 0.4251209090909091
0 -6.026918605089148e0 -6.030425033283898e0 NaN NaN
1 -4.7282564130642415e0 -4.731762841258991e0 NaN NaN
2 -3.740764114870072e0 -3.7442705430648213e0 NaN NaN
3 -2.9571447347511652e0 -2.9606511629459145e0 NaN NaN
4 -2.3331262146639107e0 -2.33663264285866e0 NaN NaN
5 -1.822752729218271e0 -1.8290814427316984e0 -1.8234368720943421e0 NaN
6 -1.4288440916787124e0 -1.432223685603304e0 -1.4324773541436193e0 NaN
7 -1.1277454047397892e0 -1.1315055520533117e0 -1.1309981138157652e0 NaN
8 -9.191559949607412e-1 -9.230404869618237e-1 -9.222843593491575e-1 NaN
9 -7.959284032103325e-1 -7.985923214863458e-1 -8.002773413238181e-1 NaN
10 -7.547205033527027e-1 -7.564737174500774e-1 -7.614431655598587e-1 -7.567639116324202e-1
11 -7.971134272615988e-1 NaN -8.013977715030706e-1 -7.99841939409626e-1
12 -9.198413168594478e-1 NaN -9.223635788688235e-1 -9.24331911239571e-1
13 -1.1307079438518484e0 NaN -1.1354009713499749e0 -1.1330277727432203e0
14 -1.4352206678153943e0 NaN -1.4366405516847656e0 -1.4408136403355214e0
15 -1.836086569993232e0 NaN -1.8383595663849142e0 -1.8408264299910484e0
16 -2.3462415423683174e0 NaN NaN -2.3497479705630666e0
17 -2.971577175460559e0 NaN NaN -2.975083603655308e0
18 -3.7473120822317787e0 NaN NaN -3.750818510426528e0
19 -4.723849161266183e0 NaN NaN -4.727355589460933e0
20 -6.016589039252039e0 NaN NaN -6.020095467446788e0
  • coin_flip_compare_entr.dat
  • gnuplot for comparing:
set format y "e^{%.0f}"
set ylabel 'P(Heads)'
set xlabel '#Heads'
p "coin_flip_compare_entr.dat" u 1:2 t "numeric results", "" u 1:3 t "analytic results"
#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif
0 -1.387749293676674e1 -1.3862943611198906e1 -1.4549325567834615e-2 -1.3774867607233972e-8
1 -1.088721273257522e1 -1.0867211337644916e1 -2.0001394930304173e-2 -3.777064132904934e-7
2 -8.613427687306894e0 -8.615919539038421e0 2.491851731527106e-3 4.5208187593923066e-7
3 -6.8090773840638645e0 -6.824160069810366e0 1.5082685746501845e-2 1.652201075832624e-5
4 -5.372221641958746e0 -5.377241086874042e0 5.019444915295601e-3 2.3250911075241125e-5
5 -4.197043262512203e0 -4.214090277068356e0 1.7047014556153428e-2 2.542138155917483e-4
6 -3.290035105712021e0 -3.2977995451941995e0 7.764439482178531e-3 2.8812509235658784e-4
7 -2.5967297576463753e0 -2.6046523646342594e0 7.922606987884162e-3 5.880353998786031e-4
8 -2.116434892132713e0 -2.119144548852554e0 2.709656719841025e-3 3.2596428483325224e-4
9 -1.832692876322666e0 -1.8314624764007785e0 -1.2303999218874484e-3 -1.9696320250631172e-4
10 -1.7378081803968959e0 -1.736152296596451e0 -1.6558838004447907e-3 -2.91520415518165e-4
11 -1.835421495037951e0 -1.8314624764007768e0 -3.959018637174294e-3 -6.328985381396646e-4
12 -2.1180129041205773e0 -2.1191445488525558e0 1.131644731978465e-3 1.3602636066446794e-4
13 -2.6035512560432146e0 -2.6046523646342594e0 1.1011085910448415e-3 8.144850674679516e-5
14 -3.304717714868686e0 -3.2977995451942013e0 -6.918169674484886e-3 -2.5484356336342995e-4
15 -4.2277455655129845e0 -4.214090277068356e0 -1.3655288444628155e-2 -2.0053163313986377e-4
16 -5.4024208000206455e0 -5.377241086874038e0 -2.5179713146607163e-2 -1.1489163608931121e-4
17 -6.842309306896834e0 -6.824160069810366e0 -1.8149237086467984e-2 -1.9553667043482144e-5
18 -8.62850493934337e0 -8.61591953903842e0 -1.2585400304951477e-2 -2.266160694642524e-6
19 -1.0877064660283938e1 -1.0867211337644916e1 -9.853322639022721e-3 -1.8701434523338205e-7
20 -1.3853708232453112e1 -1.3862943611198906e1 9.235378745794165e-3 8.848339504323986e-9
  • coin_heatmap.gp If you want to see how it looks like, you can copy the file and use gnuplot coin_heatmap.gp
set t pdf
set output "heatmap_coin_flips.pdf"
set xlabel "#Heads"
set ylabel "Max heads in row"
set xrange[-0.5:20.5]
set yrange[-0.5:20.5]
set palette model HSV
set palette negative defined  ( 0 0 1 0, 2.8 0.4 0.6 0.8, 5.5 0.83 0 1 )
set view map
set rmargin screen 0.8125
set lmargin screen 0.175
$data << EOD
1e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0
0e0 1e0 8.942007280084902e-1 7.126507397021373e-1 4.9517412091147733e-1 2.7688123477165416e-1 1.2722327984770193e-1 4.4177045183096356e-2 1.0028102647039738e-2 1.153466443696734e-3 6.05371664570287e-5 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0
0e0 0e0 1.0579927199150987e-1 2.713958719368999e-1 4.4540817854255454e-1 5.843583220621195e-1 6.111009469181893e-1 5.423656574767444e-1 4.069492904455992e-1 2.552988938810872e-1 1.2900470171992817e-1 5.0431631137845115e-2 1.265593470242199e-2 1.4620914966775231e-3 2.0244759137978155e-5 0e0 0e0 0e0 0e0 0e0 0e0
0e0 0e0 0e0 1.595338836096275e-2 5.5904340795895756e-2 1.2220762796693344e-1 2.1528419907533317e-1 3.115537295754266e-1 3.9456016612008765e-1 4.327513952410694e-1 4.1325696681890645e-1 3.289708806281932e-1 2.0963058760775158e-1 9.928609601403608e-2 3.0731544371450842e-2 4.150637780927313e-3 0e0 0e0 0e0 0e0 0e0
0e0 0e0 0e0 0e0 3.5133597500723633e-3 1.5532302403820331e-2 4.0749622963384184e-2 8.303143538227467e-2 1.426646101319277e-1 2.137791388793746e-1 2.7967161950372976e-1 3.250799083884932e-1 3.3032744400440817e-1 2.790729331572101e-1 1.8010749967102266e-1 7.551123709252885e-2 1.5334414349488519e-2 0e0 0e0 0e0 0e0
0e0 0e0 0e0 0e0 0e0 1.020512795472634e-3 5.360100872747051e-3 1.6354526486899033e-2 3.6483525259937005e-2 7.120262728426652e-2 1.1868647801491905e-1 1.764729569878942e-1 2.335334463896619e-1 2.6976596452663526e-1 2.620835906104807e-1 1.994381453735574e-1 9.346785978820091e-2 1.7855904240034085e-2 0e0 0e0 0e0
0e0 0e0 0e0 0e0 0e0 0e0 2.818503226444483e-4 2.354060630690012e-3 7.886710892146733e-3 2.0223440049966755e-2 4.2399558751320045e-2 7.696876651649762e-2 1.2222160717790269e-1 1.7494681011968982e-1 2.2017693919486592e-1 2.2753593844907877e-1 1.7919844653974737e-1 8.109473934541563e-2 5.9234312317369125e-3 0e0 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.6354526486899034e-4 1.3627038440228215e-3 4.780085829992143e-3 1.296504314954698e-2 2.89431958321798e-2 5.689886826253893e-2 9.565103405160678e-2 1.4196131226528733e-1 1.8725450496051832e-1 2.0002802634476408e-1 1.470981678375727e-1 4.815016591550691e-2 0e0 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 6.489065923918197e-5 7.555457054782101e-4 3.2690069886795498e-3 9.845720182216293e-3 2.3223514374424443e-2 4.6333175360229094e-2 8.246196515876952e-2 1.280471755416076e-1 1.6467479430664825e-1 1.6756012247445973e-1 9.21400624040414e-2 0e0 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 5.540668506840207e-5 6.59182479198757e-4 2.6980092114866736e-3 8.459095918398156e-3 2.1109576195133758e-2 4.497879361480297e-2 8.13778092731322e-2 1.2503753528316616e-1 1.6224893231205223e-1 1.4450993016690605e-1 0e0 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 2.6905407314234977e-5 5.184607253416555e-4 2.4255111437643732e-3 8.742298811168362e-3 2.2820904738285876e-2 4.859789431058919e-2 8.993453846615819e-2 1.289251776176934e-1 1.473428755386063e-1 9.912165730941529e-2 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 7.047038985226386e-5 5.334111643963144e-4 2.8233490970324586e-3 1.0051522912006155e-2 2.7029763109941284e-2 5.953596380597762e-2 9.816783757270682e-2 1.2446139369025803e-1 1.0074531974412645e-1 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 9.057925433144962e-5 7.007955794419852e-4 3.5731999878531443e-3 1.3302287912532901e-2 3.629411646948131e-2 7.41287567256909e-2 1.094943291565549e-1 1.0805180070032669e-1 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.0587559113871718e-4 9.211365407780061e-4 5.724843085644867e-3 2.0589353992753186e-2 5.197237388400598e-2 9.335842702194047e-2 1.0236898217883761e-1 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.1134617525887985e-4 1.685563879327799e-3 1.0890236822613256e-2 3.593971402808193e-2 7.825268684067159e-2 9.70187210234942e-2 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 3.4419923061348453e-4 4.05381058194703e-3 2.10564908490968e-2 6.218612252984003e-2 9.445607308437176e-2 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 9.609032490541108e-4 1.0295385408099565e-2 4.56242880491308e-2 9.8251139498034e-2 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 3.656397705090221e-3 3.337130404635729e-2 9.823157730002544e-2 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.518498340844931e-2 1.0283847493104326e-1 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 9.891625423032532e-2 0e0
0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1e0
EOD
splot $data matrix with image t "" 
set output

Example: Replica exchange wang landau

 
#[cfg(feature="replica_exchange")] // feature is activated by default - you do not need this line 
{ // neither do you need this brackets, I need them for the unit tests to work if the feature is deactivated
use rand::SeedableRng;
use rand_pcg::Pcg64;
use sampling::{*, examples::coin_flips::*};
use std::{num::*, time::*};
use statrs::distribution::{Binomial, Discrete};
use std::fs::File;
use std::io::{BufWriter, Write};

let begin = Instant::now();
// length of coin flip sequence
let n = 20;
// how many intervals do we want?
let interval_count = 3;

// create histogram. The result of our `energy` (number of heads) can be anything between 0 and n
let hist = HistUsizeFast::new_inclusive(0, n).unwrap();

// now the overlapping histograms for sampling
// lets create 3 histograms. The parameter overlap here must be larger than 0. Normally, 2 should be good
let hist_list = hist.overlapping_partition(interval_count, 2).unwrap();
let rng = Pcg64::seed_from_u64(19756556678);
 
// create an ensemble
let ensemble = CoinFlipSequence::new(n, rng);
 
// create the replica exchange simulation builder. Note: There are different methods for this
let rewl_builder = RewlBuilder::from_ensemble(
    ensemble,                           // the ensemble
    hist_list,                          // the histograms, used as intervals for the Rewl
    1,                                  // step size for the markov steps
    NonZeroUsize::new(3000).unwrap(),   // sweep size, i.e., how many steps will be performed before a replica exchange will be tried
    NonZeroUsize::new(4).unwrap(),      // How many random walkers should sample each interval (independently)?
    0.0000025                           // Threshold for the simulation
).unwrap();

// Note: You can now change the sweep size and the step sizes for the different 
// intervals independently.
// Use the `rewl_builder.step_sizes_mut()` and `rewl_builder.sweep_sizes.mut()` respecively
// The indices in the slices corresponds to the interval(index)
 
// uses greedy heuristik to find valid starting point.
// (fastest, if the ensembles are already at their respective valid starting points)
// Note: there are different heuristics. You have to try them out to see, which works best for your problem
let mut rewl = rewl_builder
    .greedy_build(
        |e| Some(e.head_count()) // energy function. It is a logical error to use a different energy function later on
    );
 
// lets say, we want to limit our simulation to roughly 40 minutes at most
let start = Instant::now();
let seconds = 40 * 60; // seconds in 40 minutes
         
// This is the heart pice - it performs the actual simulation
rewl.simulate_while(
    |e| Some(e.head_count()), // energy function. has to be the same as used above
    |_| start.elapsed().as_secs() < seconds // simulation is allowed to run while this is true
);
// note, the above simulation could take slightly longer than 40 * 60 seconds, 
// because the condition is only checked after each sweep.
// In this case however, the simulation will likely finish in a few seconds anyway,
// and since the simulation is finished before the condition is false, it will not matter

// now lets get the result of the simulation:
let glued = rewl.derivative_merged_log_prob_and_aligned()
    .unwrap();
// This is the logarithm (here base e, you can call glued.switch_base() for base 10) 
// of the probability density (or density of states)
let ln_prob = glued.glued();
 

// For this example, we know the exact result. Lets calculate it to compare
let binomial = Binomial::new(0.5, n as u64).unwrap();
let ln_prob_true: Vec<_> = (0..=n)
    .map(|k| binomial.ln_pmf(k as u64))
    .collect();

let mut max_ln_difference = f64::NEG_INFINITY;
let mut max_difference = f64::NEG_INFINITY;
let mut frac_difference_max = f64::NEG_INFINITY;
let mut frac_difference_min = f64::INFINITY;
for (index, val) in ln_prob.into_iter().zip(ln_prob_true.into_iter()).enumerate()
{
    println!("{} {} {}", index, val.0, val.1);
    let val_simulation = val.0.exp();
    let val_real = val.1.exp();
    max_difference = f64::max((val_simulation - val_real).abs(), max_difference);
    max_ln_difference = f64::max(max_ln_difference, (val.0-val.1).abs());
 
    let frac = val_simulation / val_real;
    frac_difference_max = frac_difference_max.max(frac);
    frac_difference_min = frac_difference_min.min(frac);
     
}

println!("max_ln_difference: {}", max_ln_difference);
println!("max absolute difference: {}", max_difference);
println!("max frac: {}", frac_difference_max);
println!("min frac: {}", frac_difference_min);

// at worst the simulated density overestimates the real result by under 1 %
assert!((frac_difference_max - 1.0).abs() < 0.01);
// and underestimated the result by under 1 %
assert!((frac_difference_min - 1.0).abs() < 0.01);
 
 
// Note: to get even better results, you can decrease the threshold 
// I used 2.5E-6. Often it is good to use between 1E-6 and 1E-8
// I used a larger threshold, since this is also a doc test and 
// should run in under 5 minutes in Debug mode
// (on my machine it takes about 30 seconds in debug mode and under 2 seconds in release mode)
 
// if you want to see, how good the intervals align, you can do the following
let file = File::create("coin_flip_rewl.dat").unwrap();
let buf = BufWriter::new(file);
 
let mut glued = rewl.derivative_merged_log_prob_and_aligned().unwrap();
// set verbosity for write, if you are interested in Statistics of 
// the simulation
glued.set_stat_write_verbosity(GlueWriteVerbosity::AccumulatedStats);
// write to buf
glued.write(buf).unwrap();
// and now you can plot the file, e.g., with gnuplot
 
println!("Total time: {}", begin.elapsed().as_secs());
}

To plot it, use gnuplot with

set format y "e^{%.0f}"
set ylabel "probability"
set xlabel "Number of heads"
p "coin_flip_rewl.dat" u 1:2 t "merged", for[i=3:5] "" u 1:i t "interval ".(i-3)

The resulting file is “coin_flip_rewl.dat”

#bin log_merged interval_0 interval_1 interval_2
#log: BaseE
#Accumulated Stats of 3 Intervals
#Worst log progress: 0.000002499038831218762 - out of 3 intervals that tracked log progress
#REWL contributed 3 intervals
#TOTAL: 38065207 accepted and 24358793 rejected steps, which makes a total of 62424000 steps
#TOTAL acceptance rate 0.6097848103293605
#TOTAL rejection rate 0.3902151896706395
#TOTAL performed replica exchanges: 22340
#TOTAL proposed replica exchanges: 29478
#rate of accepting replica exchanges: 0.757853314336115
#Minimum of performed Roundtrips 85
0 -1.3871903700121702e1 -1.3875739115786455e1 NaN NaN
1 -1.0870146579412317e1 -1.087398199507707e1 NaN NaN
2 -8.618332301859919e0 -8.622167717524672e0 NaN NaN
3 -6.82920349878786e0 -6.8330389144526125e0 NaN NaN
4 -5.377758170163912e0 -5.381593585828665e0 -5.388874667753538e0 NaN
5 -4.216803437381242e0 -4.220638853045995e0 -4.226280476088033e0 NaN
6 -3.29812994129598e0 -3.301965356960733e0 -3.305497156868495e0 NaN
7 -2.605482088178616e0 -2.6093175038433687e0 -2.6108809938156528e0 NaN
8 -2.1197452928056864e0 -2.1235807084704392e0 -2.1240478848774105e0 -2.122542340935621e0
9 -1.8310804880851892e0 -1.834915903749942e0 -1.834915903749942e0 -1.8347018659540995e0
10 -1.735772920315168e0 -1.7376906281475444e0 -1.7396083359799208e0 -1.7396083359799208e0
11 -1.831533663302804e0 -1.8331206687810608e0 -1.8363372589726454e0 -1.835369078967557e0
12 -2.1181512793901733e0 -2.1199758856386497e0 -2.1267731198929996e0 -2.121986695054926e0
13 -2.60403923032207e0 NaN -2.613084660078397e0 -2.607874645986823e0
14 -3.2983258973492697e0 NaN -3.3051691503818974e0 -3.3021613130140226e0
15 -4.216952145493605e0 NaN -4.21975952523182e0 -4.220787561158358e0
16 -5.381221237813844e0 NaN -5.381876163859073e0 -5.385056653478597e0
17 -6.829471030462838e0 NaN NaN -6.833306446127591e0
18 -8.62372738543517e0 NaN NaN -8.627562801099923e0
19 -1.0870037296186052e1 NaN NaN -1.0873872711850805e1
20 -1.3867708133842694e1 NaN NaN -1.3871543549507447e1

Structs

Enums