1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
//! Contains examples

/// # Example Coin flips
/// 
/// Lets assume we do n Coinflips and want to measure the probability for the number of times,
/// this results in Head. This means, the number of times the coin flip returned head is the `energy`
///
/// Of course, for this example there is an analytic solution.
/// 
/// For the implementation of the coin flip sequence and Markov chain of it, please look in the [source code](../../../src/sampling/examples/coin_flips.rs.html)
/// 
/// Now A detailed example for large deviation simulations with **comparison to analytical results**
///
/// The files created in this example can be found below
/// ```
///
/// use rand::SeedableRng;
/// use rand_pcg::Pcg64;
/// use sampling::{*, examples::coin_flips::*};
/// use std::fs::File;
/// use std::io::{BufWriter, Write};
/// use statrs::distribution::{Binomial, Discrete};
///
/// // length of coin flip sequence
/// let n = 20;
/// let interval_count = 3;
/// 
/// // create histogram. The result of our `energy` (number of heads) can be anything between 0 and n
/// let hist = HistUsizeFast::new_inclusive(0, n).unwrap();
/// 
/// // now the overlapping histograms for sampling
/// // lets create 3 histograms. The parameter Overlap should be larger than 0. Normally, 1 is sufficient
/// let hist_list = hist.overlapping_partition(interval_count, 1).unwrap();
/// // alternatively you could also create the histograms in the desired interval. 
/// // Just make sure, that they overlap
/// 
/// // create rng to seed all other rngs
/// let mut rng = Pcg64::seed_from_u64(834628956578);
/// 
/// // now create ensembles (could be combined with wl creation)
/// // note: You could also create one ensemble and clone it instead of creating different ones
/// let ensembles: Vec<_> = (0..interval_count).map(|_| {
///     CoinFlipSequence::new(
///         n,
///         Pcg64::from_rng(&mut rng).unwrap()
///     )
/// }).collect();
/// 
/// // Now the Wang Landau simulation. First create the struct 
/// // (here as Vector, since we want to use 3 overlapping intervals)
/// let mut wl_list: Vec<_> = ensembles.into_iter()
///     .zip(hist_list.into_iter())
///     .map(|(ensemble, histogram)| {
///         WangLandau1T::new(
///             0.00001, // arbitrary threshold for `log_f`(see paper), 
///                      // you have to try what is good for your model
///             ensemble,
///             Pcg64::from_rng(&mut rng).unwrap(),
///             1,  // stepsize 1 is sufficient for this problem
///             histogram,
///             100 // every 100 steps: check if WL can refine factor f
///         ).unwrap()
///     }).collect();
/// 
/// // Now we have to initialize the wl with a valid state
/// // as the simulation has to start in the interval one wants to measure.
/// // Since the energy landscape is quite simple, here a greedy approach is good enough.
/// 
/// wl_list.iter_mut()
///     .for_each(|wl|{
///         wl.init_greedy_heuristic(
///             |coin_seq| Some(coin_seq.head_count()),
///             Some(10_000) // if no valid state is found after 10_000 
///                          // this returns an Err. If you do not want a step limit,
///                          // you can use None here
///         ).expect("Unable to find valid state within 10_000 steps!");
///     });
/// 
/// // Now our ensemble is initialized. Time for the Wang Landau Simulation. 
/// // You can do that in different ways.
/// // I will show this by doing it differently for our three intervals
/// 
/// // First, the simplest one. Just simulate until the threshold for `log_f` is reached
/// wl_list[0].wang_landau_convergence(
///     |coin_seq| Some(coin_seq.head_count())
/// );
/// 
/// // Secondly, I only have a limited amount of time.
/// // Lets say, I have 1 minute at most.
/// let start_time = std::time::Instant::now();
/// wl_list[1].wang_landau_while(
///     |coin_seq| Some(coin_seq.head_count()),
///     |_| start_time.elapsed().as_secs() <= 60
/// );
/// 
/// // Or lets say, I want to limit the number of steps to 100_000
/// wl_list[2].wang_landau_while(
///     |coin_seq| Some(coin_seq.head_count()),
///     |state| state.step_counter() <= 100_000 
/// );
/// 
/// // Now, lets see if our last two simulations did indeed finish:
/// // This one did
/// assert!(wl_list[1].is_finished());
/// // This simulation did not finish
/// assert!(!wl_list[2].is_finished());
/// 
/// // If a simulation did not finish, you could, e.g., store the state (`wl_list[2]`) using serde.
/// // Then you could continue the simulation later on.
/// // I recommend the crate `bincode` for storing
/// 
/// // lets resume the simulation for now
/// wl_list[2].wang_landau_convergence(
///     |coin_seq| Some(coin_seq.head_count())
/// );
/// // it finished
/// assert!(wl_list[2].is_finished());
/// 
/// // Since our simulations did all finish, lets see what our distribution looks like
/// // Lets glue them together. We use our original histogram for that.
/// let mut glue_job = 
///     GlueJob::new_from_slice(&wl_list, LogBase::Base10);
/// let mut glued = glue_job
///     .average_merged_and_aligned()
///     .expect("Unable to glue results. Look at error message");
///
/// // now, lets print our result
/// glued.set_stat_write_verbosity(GlueWriteVerbosity::AccumulatedStats);
/// glued.write(std::io::stdout()).unwrap();
/// 
/// // or store it into a file
/// let file = File::create("coin_flip_log_density.dat").unwrap();
/// let buf = BufWriter::new(file);
/// glued.write(buf).unwrap();
/// 
/// // now, lets check if our results are actually any good.
/// // lets compare that to the analytical result
/// 
/// // Since the library I am going to use lets me directly calculate the natural
/// // logaritm of the probability, I now switch the base of our glue results
/// glued.switch_base();
/// let ln_prob = glued.glued();
/// 
/// // Then create the `true` results:
/// let binomial = Binomial::new(0.5, n as u64).unwrap();
/// 
/// let ln_prob_true: Vec<_> = (0..=n)
///     .map(|k| binomial.ln_pmf(k as u64))
///     .collect();
/// 
/// // lets write that in a file, so we can use gnuplot to plot the result
/// let comp_file = File::create("coin_flip_compare.dat").unwrap();
/// let mut buf = BufWriter::new(comp_file);
/// 
/// // lets also calculate the maximum difference between the two solutions
/// let mut max_ln_dif = std::f64::NEG_INFINITY;
/// let mut max_dif = std::f64::NEG_INFINITY;
/// 
/// writeln!(buf, "#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif").unwrap();
/// for (index, (numeric, analytic)) in ln_prob.iter().zip(ln_prob_true.iter()).enumerate()
/// {
///     let ln_dif = numeric - analytic;
///     max_ln_dif = ln_dif.abs().max(max_ln_dif);
///     let dif = numeric.exp() - analytic.exp();
///     max_dif = dif.abs().max(max_dif);
///     writeln!(buf, "{} {:e} {:e} {:e} {:e}", index, numeric, analytic, ln_dif, dif).unwrap();
/// }
/// 
/// println!("Max_ln_dif = {}", max_ln_dif);
/// println!("Max_dif = {}", max_dif);
/// 
/// // in this case, the max difference of the natural logarithms 
/// // of the probabilities is smaller than 0.03
/// assert!(max_ln_dif < 0.03);
/// // and the max absolute difference is smaller than 0.0009
/// assert!(max_dif < 0.0009);
/// 
/// // But we can do better. Lets refine the results with entropic sampling
/// // first, convert the wl simulations in entropic sampling simulations
/// let mut entropic_list: Vec<_> = wl_list
///     .into_iter()
///     .map(|wl| EntropicSampling::from_wl(wl).unwrap())
///     .collect();
/// 
/// 
/// // Now, while doing that, lets also create a heatmap.
/// // Lets say, we want to see, how the number of times `Head` occurred in the sequence 
/// // correlates to the maximum number of `Heads` in a row in that sequence.
/// 
/// // In this case, the heatmap is symmetric and we already have a histogram of correct sice
/// let mut heatmap = HeatmapU::new(
///     hist.clone(),
///     hist.clone()
/// );
/// 
/// entropic_list.iter_mut()
///     .for_each(|entr|{
///         entr.entropic_sampling(
///             |coin_seq| Some(coin_seq.head_count()),
///             |state| {
///                 let head_count = *state.energy();
///                 let heads_in_row = state.ensemble().max_heads_in_a_row();
///                 heatmap.count(head_count, heads_in_row)
///                     .expect("Value outside heatmap?");
///             }
///         )
///     });
/// 
/// // Now, lets see our refined results:
/// let mut glue_job = 
///     GlueJob::new_from_slice(&entropic_list, LogBase::Base10);
/// // Note that the library also allows you to mix REWL, REES, Entropic and Wanglandau simulations
/// // with the GlueJob, if you deem it necessary. We won't do that here though
/// 
/// // after creating the GlueJob we need to do the merging:
/// let mut glued = glue_job
///     .average_merged_and_aligned()
///     .expect("Unable to glue results. Look at error message");
/// // to also write Statistics of the simulation as comments
/// glued.set_stat_write_verbosity(GlueWriteVerbosity::IntervalStatsAndAccumulatedStats);
/// 
/// // lets store our result
/// let file = File::create("coin_flip_log_density_entropic.dat").unwrap();
/// let buf = BufWriter::new(file);
/// glued.write(buf).unwrap();
/// 
/// // now, lets compare with the analytical results again
/// // Again, calculate to base e
/// // (Note that we could have calculated to base e directly by choosing so in the GlueJob)
/// glued.switch_base();
/// let ln_prob = glued.glued();
/// 
/// 
/// // lets write that in a file, so we can use gnuplot to plot the result
/// let comp_file = File::create("coin_flip_compare_entr.dat").unwrap();
/// let mut buf = BufWriter::new(comp_file);
/// 
/// // lets also calculate the maximum difference between the two solutions
/// let mut max_ln_dif = std::f64::NEG_INFINITY;
/// let mut max_dif = std::f64::NEG_INFINITY;
/// 
/// writeln!(buf, "#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif").unwrap();
/// for (index, (numeric, analytic)) in ln_prob.iter().zip(ln_prob_true.iter()).enumerate()
/// {
///     let ln_dif = numeric - analytic;
///     max_ln_dif = ln_dif.abs().max(max_ln_dif);
///     let dif = numeric.exp() - analytic.exp();
///     max_dif = dif.abs().max(max_dif);
///     writeln!(buf, "{} {:e} {:e} {:e} {:e}", index, numeric, analytic, ln_dif, dif).unwrap();
/// }
/// 
/// println!("Max_ln_dif = {}", max_ln_dif);
/// println!("Max_dif = {}", max_dif);
/// 
/// // in this case, the max difference of the natural logarithms 
/// //of the probabilities is smaller than 0.026
/// assert!(max_ln_dif < 0.026);
/// // and the max absolut difference is smaller than 0.0007
/// assert!(max_dif < 0.0007);
/// 
/// // That would be the final result for our probability 
/// // density than. As you can see, it is very very 
/// // close to the analytical result.
/// 
/// // Now, lets see, how our heatmap looks:
/// let mut settings = GnuplotSettings::new();
/// settings.x_label("#Heads")
///     .y_label("Max heads in row")
///     .terminal(GnuplotTerminal::PDF("heatmap_coin_flips".to_owned()));
/// 
/// // lets normalize coloumwise
/// // This way, the scale of our heatmap tells us the conditional probability
/// // P(Number of heads in a rom | number of heads) of how many heads in a row were
/// // part of that sequence given the total number of heads that occurred in the sequence
/// let heatmap = heatmap.heatmap_normalized_columns();
/// 
/// // now create gnuplot file
/// let file = File::create("coin_heatmap.gp").unwrap();
/// let buf = BufWriter::new(file);
/// heatmap.gnuplot(
///     buf,
///     settings
/// ).unwrap();
/// 
/// // now you can use gnuplot to plot the heatmap
/// ```
/// # Created files:
/// * `coin_flip_log_density.dat`
/// ```txt 
/// #bin log_merged interval_0 interval_1 interval_2
/// #log: Base10
/// #Accumulated Stats of 3 Intervals
/// #Worst log progress: 0.00001 - out of 3 intervals that tracked log progress
/// #WangLandau1T contributed 3 intervals
/// #TOTAL: 1892678 accepted and 1407322 rejected steps, which makes a total of 3300000 steps
/// #TOTAL acceptance rate 0.5735387878787879
/// #TOTAL rejection rate 0.42646121212121213
/// 0 -6.031606841072606e0 -6.0298907440626826e0 NaN NaN
/// 1 -4.728485280490379e0 -4.726769183480456e0 NaN NaN
/// 2 -3.7500990622715635e0 -3.74838296526164e0 NaN NaN
/// 3 -2.9668930048460895e0 -2.965176907836166e0 NaN NaN
/// 4 -2.339721588163688e0 -2.3380054911537647e0 NaN NaN
/// 5 -1.8365244111917054e0 -1.8339599228584254e0 -1.8356567055051392e0 NaN
/// 6 -1.4371802248730712e0 -1.4356118452020317e0 -1.4353164105242642e0 NaN
/// 7 -1.1351008012679982e0 -1.1338310003177616e0 -1.1329384081983884e0 NaN
/// 8 -9.233969878866752e-1 -9.223363651917955e-1 -9.210254165617083e-1 NaN
/// 9 -7.962413727681732e-1 -7.946574743680577e-1 -7.943930771484421e-1 NaN
/// 10 -7.528173091050847e-1 -7.519592606001231e-1 -7.530258506002528e-1 -7.483185250851084e-1
/// 11 -7.942713970200067e-1 NaN -7.946314602982628e-1 -7.904791397219041e-1
/// 12 -9.171173964543223e-1 NaN -9.17538022792398e-1 -9.132645760964001e-1
/// 13 -1.1271626249139948e0 NaN -1.1256565589949121e0 -1.125236496813231e0
/// 14 -1.430004495200477e0 NaN -1.4270017524820386e0 -1.4295750438990686e0
/// 15 -1.8307880991746777e0 NaN -1.8235820703886783e0 -1.8345619339408306e0
/// 16 -2.3447129767461368e0 NaN NaN -2.342996879736213e0
/// 17 -2.974429977113245e0 NaN NaN -2.972713880103322e0
/// 18 -3.7503197785367197e0 NaN NaN -3.7486036815267965e0
/// 19 -4.732341369591395e0 NaN NaN -4.730625272581472e0
/// 20 -6.014059503852461e0 NaN NaN -6.012343406842537e0
/// ```
/// * `coin_flip_compare.dat`
/// ```dat
/// #head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif
/// 0 -1.388828799905469e1 -1.3862943611198906e1 -2.5344387855783523e-2 -2.3866572408958168e-8
/// 1 -1.0887739719298917e1 -1.0867211337644916e1 -2.0528381654001393e-2 -3.875562455014197e-7
/// 2 -8.634922198037453e0 -8.615919539038421e0 -1.9002658999031752e-2 -3.4107369181183742e-6
/// 3 -6.831523605466917e0 -6.824160069810366e0 -7.363535656550901e-3 -7.976150535885006e-6
/// 4 -5.387408050662062e0 -5.377241086874042e0 -1.0166963788019956e-2 -4.673898610979728e-5
/// 5 -4.228753732129688e0 -4.214090277068356e0 -1.4663455061331376e-2 -2.152285704062097e-4
/// 6 -3.309229761738564e0 -3.2977995451941995e0 -1.1430216544364491e-2 -4.201057612779821e-4
/// 7 -2.6136661840452895e0 -2.6046523646342594e0 -9.013819411030077e-3 -6.633868338237203e-4
/// 8 -2.126200139223462e0 -2.119144548852554e0 -7.0555903709079715e-3 -8.446355834740987e-4
/// 9 -1.8334135153611106e0 -1.8314624764007785e0 -1.9510389603321077e-3 -3.122110722084126e-4
/// 10 -1.7334259136932588e0 -1.736152296596451e0 2.7263829031922704e-3 4.810360764700705e-4
/// 11 -1.8288774785698227e0 -1.8314624764007768e0 2.5849978309540056e-3 4.145983618321636e-4
/// 12 -2.1117408456012328e0 -2.1191445488525558e0 7.403703251323002e-3 8.927398170218287e-4
/// 13 -2.5953878575070033e0 -2.6046523646342594e0 9.264507127256127e-3 6.880967171132152e-4
/// 14 -3.2927070335630937e0 -3.2977995451942013e0 5.092511631107577e-3 1.8872184723020546e-4
/// 15 -4.215545385590517e0 -4.214090277068356e0 -1.4551085221610194e-3 -2.1499249324725273e-5
/// 16 -5.398901147605349e0 -5.377241086874038e0 -2.1660060731310438e-2 -9.900533675925687e-5
/// 17 -6.848878125455579e0 -6.824160069810366e0 -2.47180556452129e-2 -2.6543784456516638e-5
/// 18 -8.635430416019382e0 -8.61591953903842e0 -1.9510876980962877e-2 -3.5010687071566015e-6
/// 19 -1.0896618692580171e1 -1.0867211337644916e1 -2.940735493525537e-2 -5.52733731038154e-7
/// 20 -1.3847883761949843e1 -1.3862943611198906e1 1.5059849249063006e-2 1.4470882595462752e-8
/// ```
/// * `coin_flip_log_density_entropic.dat`
/// * If you want to plot with gnuplot:
/// ```gp
/// set format y "10^{%.0f}"
/// set ylabel 'P(Heads)'
/// set xlabel '#Heads'
/// p "coin_flip_log_density_entropic.dat" u 1:2 t 'P(E), normalized',\
///    for[i=3:5] "" u 1:i t "glued overlapping interval"
/// ```
/// * and here is the file the program has outputted: `coin_flip_log_density_entropic.dat`
/// * note that the verbosity was set to `GlueWriteVerbosity::IntervalStatsAndAccumulatedStats`
/// ```csv
/// #bin log_merged interval_0 interval_1 interval_2
/// #log: Base10
/// #Interval Stats
/// #Stats for Interval 0
/// #Simulated via: "Entropic"
/// #progress MissingSteps(0)
/// #created from a single walker
/// #had 549335 accepted and 550665 rejected steps, which makes a total of 1100000 steps
/// #acceptance rate 0.49939545454545453
/// #rejection rate 0.5006045454545455
/// #
/// #Stats for Interval 1
/// #Simulated via: "Entropic"
/// #progress MissingSteps(0)
/// #created from a single walker
/// #had 799683 accepted and 300317 rejected steps, which makes a total of 1100000 steps
/// #acceptance rate 0.7269845454545455
/// #rejection rate 0.27301545454545456
/// #
/// #Stats for Interval 2
/// #Simulated via: "Entropic"
/// #progress MissingSteps(0)
/// #created from a single walker
/// #had 548083 accepted and 551917 rejected steps, which makes a total of 1100000 steps
/// #acceptance rate 0.4982572727272727
/// #rejection rate 0.5017427272727273
/// #
/// #Accumulated Stats of 3 Intervals
/// #Worst missing steps progress: 0 - out of 3 intervals that tracked missing steps progress
/// #Entropic contributed 3 intervals
/// #TOTAL: 1897101 accepted and 1402899 rejected steps, which makes a total of 3300000 steps
/// #TOTAL acceptance rate 0.574879090909091
/// #TOTAL rejection rate 0.4251209090909091
/// 0 -6.026918605089148e0 -6.030425033283898e0 NaN NaN
/// 1 -4.7282564130642415e0 -4.731762841258991e0 NaN NaN
/// 2 -3.740764114870072e0 -3.7442705430648213e0 NaN NaN
/// 3 -2.9571447347511652e0 -2.9606511629459145e0 NaN NaN
/// 4 -2.3331262146639107e0 -2.33663264285866e0 NaN NaN
/// 5 -1.822752729218271e0 -1.8290814427316984e0 -1.8234368720943421e0 NaN
/// 6 -1.4288440916787124e0 -1.432223685603304e0 -1.4324773541436193e0 NaN
/// 7 -1.1277454047397892e0 -1.1315055520533117e0 -1.1309981138157652e0 NaN
/// 8 -9.191559949607412e-1 -9.230404869618237e-1 -9.222843593491575e-1 NaN
/// 9 -7.959284032103325e-1 -7.985923214863458e-1 -8.002773413238181e-1 NaN
/// 10 -7.547205033527027e-1 -7.564737174500774e-1 -7.614431655598587e-1 -7.567639116324202e-1
/// 11 -7.971134272615988e-1 NaN -8.013977715030706e-1 -7.99841939409626e-1
/// 12 -9.198413168594478e-1 NaN -9.223635788688235e-1 -9.24331911239571e-1
/// 13 -1.1307079438518484e0 NaN -1.1354009713499749e0 -1.1330277727432203e0
/// 14 -1.4352206678153943e0 NaN -1.4366405516847656e0 -1.4408136403355214e0
/// 15 -1.836086569993232e0 NaN -1.8383595663849142e0 -1.8408264299910484e0
/// 16 -2.3462415423683174e0 NaN NaN -2.3497479705630666e0
/// 17 -2.971577175460559e0 NaN NaN -2.975083603655308e0
/// 18 -3.7473120822317787e0 NaN NaN -3.750818510426528e0
/// 19 -4.723849161266183e0 NaN NaN -4.727355589460933e0
/// 20 -6.016589039252039e0 NaN NaN -6.020095467446788e0
/// ```
/// * `coin_flip_compare_entr.dat`
/// * gnuplot for comparing:
/// ```gp
/// set format y "e^{%.0f}"
/// set ylabel 'P(Heads)'
/// set xlabel '#Heads'
/// p "coin_flip_compare_entr.dat" u 1:2 t "numeric results", "" u 1:3 t "analytic results"
/// ```
/// ```txt
/// #head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif
/// 0 -1.387749293676674e1 -1.3862943611198906e1 -1.4549325567834615e-2 -1.3774867607233972e-8
/// 1 -1.088721273257522e1 -1.0867211337644916e1 -2.0001394930304173e-2 -3.777064132904934e-7
/// 2 -8.613427687306894e0 -8.615919539038421e0 2.491851731527106e-3 4.5208187593923066e-7
/// 3 -6.8090773840638645e0 -6.824160069810366e0 1.5082685746501845e-2 1.652201075832624e-5
/// 4 -5.372221641958746e0 -5.377241086874042e0 5.019444915295601e-3 2.3250911075241125e-5
/// 5 -4.197043262512203e0 -4.214090277068356e0 1.7047014556153428e-2 2.542138155917483e-4
/// 6 -3.290035105712021e0 -3.2977995451941995e0 7.764439482178531e-3 2.8812509235658784e-4
/// 7 -2.5967297576463753e0 -2.6046523646342594e0 7.922606987884162e-3 5.880353998786031e-4
/// 8 -2.116434892132713e0 -2.119144548852554e0 2.709656719841025e-3 3.2596428483325224e-4
/// 9 -1.832692876322666e0 -1.8314624764007785e0 -1.2303999218874484e-3 -1.9696320250631172e-4
/// 10 -1.7378081803968959e0 -1.736152296596451e0 -1.6558838004447907e-3 -2.91520415518165e-4
/// 11 -1.835421495037951e0 -1.8314624764007768e0 -3.959018637174294e-3 -6.328985381396646e-4
/// 12 -2.1180129041205773e0 -2.1191445488525558e0 1.131644731978465e-3 1.3602636066446794e-4
/// 13 -2.6035512560432146e0 -2.6046523646342594e0 1.1011085910448415e-3 8.144850674679516e-5
/// 14 -3.304717714868686e0 -3.2977995451942013e0 -6.918169674484886e-3 -2.5484356336342995e-4
/// 15 -4.2277455655129845e0 -4.214090277068356e0 -1.3655288444628155e-2 -2.0053163313986377e-4
/// 16 -5.4024208000206455e0 -5.377241086874038e0 -2.5179713146607163e-2 -1.1489163608931121e-4
/// 17 -6.842309306896834e0 -6.824160069810366e0 -1.8149237086467984e-2 -1.9553667043482144e-5
/// 18 -8.62850493934337e0 -8.61591953903842e0 -1.2585400304951477e-2 -2.266160694642524e-6
/// 19 -1.0877064660283938e1 -1.0867211337644916e1 -9.853322639022721e-3 -1.8701434523338205e-7
/// 20 -1.3853708232453112e1 -1.3862943611198906e1 9.235378745794165e-3 8.848339504323986e-9
/// ```
/// * `coin_heatmap.gp`
/// If you want to see how it looks like, you can copy the file and use `gnuplot coin_heatmap.gp`
/// ```gp
/// set t pdf
/// set output "heatmap_coin_flips.pdf"
/// set xlabel "#Heads"
/// set ylabel "Max heads in row"
/// set xrange[-0.5:20.5]
/// set yrange[-0.5:20.5]
/// set palette model HSV
/// set palette negative defined  ( 0 0 1 0, 2.8 0.4 0.6 0.8, 5.5 0.83 0 1 )
/// set view map
/// set rmargin screen 0.8125
/// set lmargin screen 0.175
/// $data << EOD
/// 1e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0
/// 0e0 1e0 8.942007280084902e-1 7.126507397021373e-1 4.9517412091147733e-1 2.7688123477165416e-1 1.2722327984770193e-1 4.4177045183096356e-2 1.0028102647039738e-2 1.153466443696734e-3 6.05371664570287e-5 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0
/// 0e0 0e0 1.0579927199150987e-1 2.713958719368999e-1 4.4540817854255454e-1 5.843583220621195e-1 6.111009469181893e-1 5.423656574767444e-1 4.069492904455992e-1 2.552988938810872e-1 1.2900470171992817e-1 5.0431631137845115e-2 1.265593470242199e-2 1.4620914966775231e-3 2.0244759137978155e-5 0e0 0e0 0e0 0e0 0e0 0e0
/// 0e0 0e0 0e0 1.595338836096275e-2 5.5904340795895756e-2 1.2220762796693344e-1 2.1528419907533317e-1 3.115537295754266e-1 3.9456016612008765e-1 4.327513952410694e-1 4.1325696681890645e-1 3.289708806281932e-1 2.0963058760775158e-1 9.928609601403608e-2 3.0731544371450842e-2 4.150637780927313e-3 0e0 0e0 0e0 0e0 0e0
/// 0e0 0e0 0e0 0e0 3.5133597500723633e-3 1.5532302403820331e-2 4.0749622963384184e-2 8.303143538227467e-2 1.426646101319277e-1 2.137791388793746e-1 2.7967161950372976e-1 3.250799083884932e-1 3.3032744400440817e-1 2.790729331572101e-1 1.8010749967102266e-1 7.551123709252885e-2 1.5334414349488519e-2 0e0 0e0 0e0 0e0
/// 0e0 0e0 0e0 0e0 0e0 1.020512795472634e-3 5.360100872747051e-3 1.6354526486899033e-2 3.6483525259937005e-2 7.120262728426652e-2 1.1868647801491905e-1 1.764729569878942e-1 2.335334463896619e-1 2.6976596452663526e-1 2.620835906104807e-1 1.994381453735574e-1 9.346785978820091e-2 1.7855904240034085e-2 0e0 0e0 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 2.818503226444483e-4 2.354060630690012e-3 7.886710892146733e-3 2.0223440049966755e-2 4.2399558751320045e-2 7.696876651649762e-2 1.2222160717790269e-1 1.7494681011968982e-1 2.2017693919486592e-1 2.2753593844907877e-1 1.7919844653974737e-1 8.109473934541563e-2 5.9234312317369125e-3 0e0 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.6354526486899034e-4 1.3627038440228215e-3 4.780085829992143e-3 1.296504314954698e-2 2.89431958321798e-2 5.689886826253893e-2 9.565103405160678e-2 1.4196131226528733e-1 1.8725450496051832e-1 2.0002802634476408e-1 1.470981678375727e-1 4.815016591550691e-2 0e0 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 6.489065923918197e-5 7.555457054782101e-4 3.2690069886795498e-3 9.845720182216293e-3 2.3223514374424443e-2 4.6333175360229094e-2 8.246196515876952e-2 1.280471755416076e-1 1.6467479430664825e-1 1.6756012247445973e-1 9.21400624040414e-2 0e0 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 5.540668506840207e-5 6.59182479198757e-4 2.6980092114866736e-3 8.459095918398156e-3 2.1109576195133758e-2 4.497879361480297e-2 8.13778092731322e-2 1.2503753528316616e-1 1.6224893231205223e-1 1.4450993016690605e-1 0e0 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 2.6905407314234977e-5 5.184607253416555e-4 2.4255111437643732e-3 8.742298811168362e-3 2.2820904738285876e-2 4.859789431058919e-2 8.993453846615819e-2 1.289251776176934e-1 1.473428755386063e-1 9.912165730941529e-2 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 7.047038985226386e-5 5.334111643963144e-4 2.8233490970324586e-3 1.0051522912006155e-2 2.7029763109941284e-2 5.953596380597762e-2 9.816783757270682e-2 1.2446139369025803e-1 1.0074531974412645e-1 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 9.057925433144962e-5 7.007955794419852e-4 3.5731999878531443e-3 1.3302287912532901e-2 3.629411646948131e-2 7.41287567256909e-2 1.094943291565549e-1 1.0805180070032669e-1 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.0587559113871718e-4 9.211365407780061e-4 5.724843085644867e-3 2.0589353992753186e-2 5.197237388400598e-2 9.335842702194047e-2 1.0236898217883761e-1 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.1134617525887985e-4 1.685563879327799e-3 1.0890236822613256e-2 3.593971402808193e-2 7.825268684067159e-2 9.70187210234942e-2 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 3.4419923061348453e-4 4.05381058194703e-3 2.10564908490968e-2 6.218612252984003e-2 9.445607308437176e-2 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 9.609032490541108e-4 1.0295385408099565e-2 4.56242880491308e-2 9.8251139498034e-2 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 3.656397705090221e-3 3.337130404635729e-2 9.823157730002544e-2 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1.518498340844931e-2 1.0283847493104326e-1 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 9.891625423032532e-2 0e0
/// 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 0e0 1e0
/// EOD
/// splot $data matrix with image t "" 
/// set output
/// ```
/// 
/// # Example: Replica exchange wang landau
/// * The same example as above, but with replica exchange wang landau
/// * [see explanaition of the model](#example-coin-flips)
/// ```
/// 
/// #[cfg(feature="replica_exchange")] // feature is activated by default - you do not need this line 
/// { // neither do you need this brackets, I need them for the unit tests to work if the feature is deactivated
/// use rand::SeedableRng;
/// use rand_pcg::Pcg64;
/// use sampling::{*, examples::coin_flips::*};
/// use std::{num::*, time::*};
/// use statrs::distribution::{Binomial, Discrete};
/// use std::fs::File;
/// use std::io::{BufWriter, Write};
///
/// let begin = Instant::now();
/// // length of coin flip sequence
/// let n = 20;
/// // how many intervals do we want?
/// let interval_count = 3;
///
/// // create histogram. The result of our `energy` (number of heads) can be anything between 0 and n
/// let hist = HistUsizeFast::new_inclusive(0, n).unwrap();
///
/// // now the overlapping histograms for sampling
/// // lets create 3 histograms. The parameter overlap here must be larger than 0. Normally, 2 should be good
/// let hist_list = hist.overlapping_partition(interval_count, 2).unwrap();
/// let rng = Pcg64::seed_from_u64(19756556678);
/// 
/// // create an ensemble
/// let ensemble = CoinFlipSequence::new(n, rng);
/// 
/// // create the replica exchange simulation builder. Note: There are different methods for this
/// let rewl_builder = RewlBuilder::from_ensemble(
///     ensemble,                           // the ensemble
///     hist_list,                          // the histograms, used as intervals for the Rewl
///     1,                                  // step size for the markov steps
///     NonZeroUsize::new(3000).unwrap(),   // sweep size, i.e., how many steps will be performed before a replica exchange will be tried
///     NonZeroUsize::new(4).unwrap(),      // How many random walkers should sample each interval (independently)?
///     0.0000025                           // Threshold for the simulation
/// ).unwrap();
///
/// // Note: You can now change the sweep size and the step sizes for the different 
/// // intervals independently.
/// // Use the `rewl_builder.step_sizes_mut()` and `rewl_builder.sweep_sizes.mut()` respecively
/// // The indices in the slices corresponds to the interval(index)
/// 
/// // uses greedy heuristik to find valid starting point.
/// // (fastest, if the ensembles are already at their respective valid starting points)
/// // Note: there are different heuristics. You have to try them out to see, which works best for your problem
/// let mut rewl = rewl_builder
///     .greedy_build(
///         |e| Some(e.head_count()) // energy function. It is a logical error to use a different energy function later on
///     );
/// 
/// // lets say, we want to limit our simulation to roughly 40 minutes at most
/// let start = Instant::now();
/// let seconds = 40 * 60; // seconds in 40 minutes
///         
/// // This is the heart pice - it performs the actual simulation
/// rewl.simulate_while(
///     |e| Some(e.head_count()), // energy function. has to be the same as used above
///     |_| start.elapsed().as_secs() < seconds // simulation is allowed to run while this is true
/// );
/// // note, the above simulation could take slightly longer than 40 * 60 seconds, 
/// // because the condition is only checked after each sweep.
/// // In this case however, the simulation will likely finish in a few seconds anyway,
/// // and since the simulation is finished before the condition is false, it will not matter
///
/// // now lets get the result of the simulation:
/// let glued = rewl.derivative_merged_log_prob_and_aligned()
///     .unwrap();
/// // This is the logarithm (here base e, you can call glued.switch_base() for base 10) 
/// // of the probability density (or density of states)
/// let ln_prob = glued.glued();
/// 
///
/// // For this example, we know the exact result. Lets calculate it to compare
/// let binomial = Binomial::new(0.5, n as u64).unwrap();
/// let ln_prob_true: Vec<_> = (0..=n)
///     .map(|k| binomial.ln_pmf(k as u64))
///     .collect();
///
/// let mut max_ln_difference = f64::NEG_INFINITY;
/// let mut max_difference = f64::NEG_INFINITY;
/// let mut frac_difference_max = f64::NEG_INFINITY;
/// let mut frac_difference_min = f64::INFINITY;
/// for (index, val) in ln_prob.into_iter().zip(ln_prob_true.into_iter()).enumerate()
/// {
///     println!("{} {} {}", index, val.0, val.1);
///     let val_simulation = val.0.exp();
///     let val_real = val.1.exp();
///     max_difference = f64::max((val_simulation - val_real).abs(), max_difference);
///     max_ln_difference = f64::max(max_ln_difference, (val.0-val.1).abs());
/// 
///     let frac = val_simulation / val_real;
///     frac_difference_max = frac_difference_max.max(frac);
///     frac_difference_min = frac_difference_min.min(frac);
///     
/// }
///
/// println!("max_ln_difference: {}", max_ln_difference);
/// println!("max absolute difference: {}", max_difference);
/// println!("max frac: {}", frac_difference_max);
/// println!("min frac: {}", frac_difference_min);
///
/// // at worst the simulated density overestimates the real result by under 1 %
/// assert!((frac_difference_max - 1.0).abs() < 0.01);
/// // and underestimated the result by under 1 %
/// assert!((frac_difference_min - 1.0).abs() < 0.01);
/// 
/// 
/// // Note: to get even better results, you can decrease the threshold 
/// // I used 2.5E-6. Often it is good to use between 1E-6 and 1E-8
/// // I used a larger threshold, since this is also a doc test and 
/// // should run in under 5 minutes in Debug mode
/// // (on my machine it takes about 30 seconds in debug mode and under 2 seconds in release mode)
/// 
/// // if you want to see, how good the intervals align, you can do the following
/// let file = File::create("coin_flip_rewl.dat").unwrap();
/// let buf = BufWriter::new(file);
/// 
/// let mut glued = rewl.derivative_merged_log_prob_and_aligned().unwrap();
/// // set verbosity for write, if you are interested in Statistics of 
/// // the simulation
/// glued.set_stat_write_verbosity(GlueWriteVerbosity::AccumulatedStats);
/// // write to buf
/// glued.write(buf).unwrap();
/// // and now you can plot the file, e.g., with gnuplot
/// 
/// println!("Total time: {}", begin.elapsed().as_secs());
/// }
/// ```
/// 
/// To plot it, use gnuplot with
/// ```gp
/// set format y "e^{%.0f}"
/// set ylabel "probability"
/// set xlabel "Number of heads"
/// p "coin_flip_rewl.dat" u 1:2 t "merged", for[i=3:5] "" u 1:i t "interval ".(i-3)
/// ```
/// 
/// The resulting file is "coin_flip_rewl.dat"
/// ```dat
/// #bin log_merged interval_0 interval_1 interval_2
/// #log: BaseE
/// #Accumulated Stats of 3 Intervals
/// #Worst log progress: 0.000002499038831218762 - out of 3 intervals that tracked log progress
/// #REWL contributed 3 intervals
/// #TOTAL: 38065207 accepted and 24358793 rejected steps, which makes a total of 62424000 steps
/// #TOTAL acceptance rate 0.6097848103293605
/// #TOTAL rejection rate 0.3902151896706395
/// #TOTAL performed replica exchanges: 22340
/// #TOTAL proposed replica exchanges: 29478
/// #rate of accepting replica exchanges: 0.757853314336115
/// #Minimum of performed Roundtrips 85
/// 0 -1.3871903700121702e1 -1.3875739115786455e1 NaN NaN
/// 1 -1.0870146579412317e1 -1.087398199507707e1 NaN NaN
/// 2 -8.618332301859919e0 -8.622167717524672e0 NaN NaN
/// 3 -6.82920349878786e0 -6.8330389144526125e0 NaN NaN
/// 4 -5.377758170163912e0 -5.381593585828665e0 -5.388874667753538e0 NaN
/// 5 -4.216803437381242e0 -4.220638853045995e0 -4.226280476088033e0 NaN
/// 6 -3.29812994129598e0 -3.301965356960733e0 -3.305497156868495e0 NaN
/// 7 -2.605482088178616e0 -2.6093175038433687e0 -2.6108809938156528e0 NaN
/// 8 -2.1197452928056864e0 -2.1235807084704392e0 -2.1240478848774105e0 -2.122542340935621e0
/// 9 -1.8310804880851892e0 -1.834915903749942e0 -1.834915903749942e0 -1.8347018659540995e0
/// 10 -1.735772920315168e0 -1.7376906281475444e0 -1.7396083359799208e0 -1.7396083359799208e0
/// 11 -1.831533663302804e0 -1.8331206687810608e0 -1.8363372589726454e0 -1.835369078967557e0
/// 12 -2.1181512793901733e0 -2.1199758856386497e0 -2.1267731198929996e0 -2.121986695054926e0
/// 13 -2.60403923032207e0 NaN -2.613084660078397e0 -2.607874645986823e0
/// 14 -3.2983258973492697e0 NaN -3.3051691503818974e0 -3.3021613130140226e0
/// 15 -4.216952145493605e0 NaN -4.21975952523182e0 -4.220787561158358e0
/// 16 -5.381221237813844e0 NaN -5.381876163859073e0 -5.385056653478597e0
/// 17 -6.829471030462838e0 NaN NaN -6.833306446127591e0
/// 18 -8.62372738543517e0 NaN NaN -8.627562801099923e0
/// 19 -1.0870037296186052e1 NaN NaN -1.0873872711850805e1
/// 20 -1.3867708133842694e1 NaN NaN -1.3871543549507447e1
/// ```
pub mod coin_flips;


// TODO Include this test and make it work!
/* 
#[cfg(test)]
mod tests{
    use rand::SeedableRng;
    use rand_pcg::Pcg64;
    use crate::{*, examples::coin_flips::*};
    use std::fs::File;
    use std::io::{BufWriter, Write};
    use statrs::distribution::{Binomial, Discrete};
    #[test]
    fn test_exclusive_borders()
    {

        
         // length of coin flip sequence
         let n = 20;
         let interval_count = 3;
            
         // create histogram. The result of our `energy` (number of heads) can be anything between 0 and n
         let hist = HistUsize::new_inclusive(0, n, n + 1).unwrap();
         assert!(!hist.last_border_is_inclusive());
            
         // now the overlapping histograms for sampling
         // lets create 3 histograms. The parameter Overlap should be larger than 0. Normally, 1 is sufficient
         let hist_list = hist.overlapping_partition(interval_count, 1).unwrap();
         // alternatively you could also create the histograms in the desired interval. 
         // Just make sure, that they overlap
            
         // create rng to seed all other rngs
         let mut rng = Pcg64::seed_from_u64(834628956578);
            
         // now create ensembles (could be combined with wl creation)
         // note: You could also create one ensemble and clone it instead of creating different ones
         let ensembles: Vec<_> = (0..interval_count).map(|_| {
             CoinFlipSequence::new(
                 n,
                 Pcg64::from_rng(&mut rng).unwrap()
             )
         }).collect();
         
         // Now the Wang Landau simulation. First create the struct 
         // (here as Vector, since we want to use 3 overlapping intervals)
         let mut wl_list: Vec<_> = ensembles.into_iter()
             .zip(hist_list.into_iter())
             .map(|(ensemble, histogram)| {
                 WangLandau1T::new(
                     0.00001, // arbitrary threshold for `log_f`(see paper), 
                              // you have to try what is good for your model
                     ensemble,
                     Pcg64::from_rng(&mut rng).unwrap(),
                     1,  // stepsize 1 is sufficient for this problem
                     histogram,
                     100 // every 100 steps: check if WL can refine factor f
                 ).unwrap()
             }).collect();
         
         // Now we have to initialize the wl with a valid state
         // as the simulation has to start in the interval one wants to measure.
         // Since the energy landscape is quite simple, here a greedy approach is good enough.
         
         wl_list.iter_mut()
             .for_each(|wl|{
                 wl.init_greedy_heuristic(
                     |coin_seq| Some(coin_seq.head_count()),
                     Some(10_000) // if no valid state is found after 10_000 
                                  // this returns an Err. If you do not want a step limit,
                                  // you can use None here
                 ).expect("Unable to find valid state within 10_000 steps!");
             });
         
         // Now our ensemble is initialized. Time for the Wang Landau Simulation. 
         // You can do that in different ways.
         // I will show this by doing it differently for our three intervals
         
         // First, the simplest one. Just simulate until the threshold for `log_f` is reached
         wl_list[0].wang_landau_convergence(
             |coin_seq| Some(coin_seq.head_count())
         );
         
         // Secondly, I only have a limited amount of time.
         // Lets say, I have 1 minute at most.
         let start_time = std::time::Instant::now();
         wl_list[1].wang_landau_while(
             |coin_seq| Some(coin_seq.head_count()),
             |_| start_time.elapsed().as_secs() <= 60
         );
         
         // Or lets say, I want to limit the number of steps to 100_000
         wl_list[2].wang_landau_while(
             |coin_seq| Some(coin_seq.head_count()),
             |state| state.step_counter() <= 100_000 
         );
         
         // Now, lets see if our last two simulations did indeed finish:
         // This one did
         assert!(wl_list[1].is_finished());
         // This simulation did not finish
         assert!(!wl_list[2].is_finished());
         
         // If a simulation did not finish, you could, e.g., store the state (`wl_list[2]`) using serde.
         // Then you could continue the simulation later on.
         // I recommend the crate `bincode` for storing
         
         // lets resume the simulation for now
         wl_list[2].wang_landau_convergence(
             |coin_seq| Some(coin_seq.head_count())
         );
         // it finished
         assert!(wl_list[2].is_finished());
         
         // Since our simulations did all finish, lets see what our distribution looks like
         // Lets glue them together. We use our original histogram for that.
         let glue_job = glue::GlueJob::new_from_slice(
            &wl_list, 
            LogBase::Base10
        );
         let glued = glue_job.average_merged_and_aligned()
            .expect("Unable to glue results. Look at error message");
         
         // now, lets print our result
         glued.write(std::io::stdout()).unwrap();
         
         // or store it into a file
         let file = File::create("coin_flip_log_density_e.dat").unwrap();
         let buf = BufWriter::new(file);
         glued.write(buf).unwrap();
         
         // now, lets check if our results are actually any good.
         // lets compare that to the analytical result
         
         // Since the library I am going to use lets me directly calculate the natural
         // logaritm of the probability, I first convert the base of our own results:
         let log10_prob = glued.glued_log10_probability;
         let ln_prob: Vec<_> = log10_prob.iter()
                                 .map(|&val| val / std::f64::consts::LOG10_E)
                                 .collect();
         
         // Then create the `true` results:
         let binomial = Binomial::new(0.5, n as u64).unwrap();
         
         let ln_prob_true: Vec<_> = (0..=n)
             .map(|k| binomial.ln_pmf(k as u64))
             .collect();
         
         // lets write that in a file, so we can use gnuplot to plot the result
         let comp_file = File::create("coin_flip_compare_e.dat").unwrap();
         let mut buf = BufWriter::new(comp_file);
         
         // lets also calculate the maximum difference between the two solutions
         let mut max_ln_dif = std::f64::NEG_INFINITY;
         let mut max_dif = std::f64::NEG_INFINITY;
         
         writeln!(buf, "#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif").unwrap();
         for (index, (numeric, analytic)) in ln_prob.iter().zip(ln_prob_true.iter()).enumerate()
         {
             let ln_dif = numeric - analytic;
             max_ln_dif = ln_dif.abs().max(max_ln_dif);
             let dif = numeric.exp() - analytic.exp();
             max_dif = dif.abs().max(max_dif);
             writeln!(buf, "{} {:e} {:e} {:e} {:e}", index, numeric, analytic, ln_dif, dif).unwrap();
         }
         
         println!("Max_ln_dif = {}", max_ln_dif);
         println!("Max_dif = {}", max_dif);
         
         // in this case, the max difference of the natural logarithms 
         // of the probabilities is smaller than 0.03
         assert!(max_ln_dif < 0.03);
         // and the max absolute difference is smaller than 0.0009
         assert!(max_dif < 0.0009);
         
         // But we can do better. Lets refine the results with entropic sampling
         // first, convert the wl simulations in entropic sampling simulations
         let mut entropic_list: Vec<_> = wl_list
             .into_iter()
             .map(|wl| EntropicSampling::from_wl(wl).unwrap())
             .collect();
         
         
         // Now, while doing that, lets also create a heatmap.
         // Lets say, we want to see, how the number of times `Head` occurred in the sequence 
         // correlates to the maximum number of `Heads` in a row in that sequence.
         
         // In this case, the heatmap is symmetric and we already have a histogram of correct sice
         let mut heatmap = HeatmapU::new(
             hist.clone(),
             hist.clone()
         );
         
         entropic_list.iter_mut()
             .for_each(|entr|{
                 entr.entropic_sampling(
                     |coin_seq| Some(coin_seq.head_count()),
                     |state| {
                         let head_count = *state.energy();
                         let heads_in_row = state.ensemble().max_heads_in_a_row();
                         heatmap.count(head_count, heads_in_row)
                             .expect("Value outside heatmap?");
                     }
                 )
             });
         
         // Now, lets see our refined results:
         let glued = glue_entropic(
             &entropic_list,
             &hist
         ).expect("Unable to glue results. Look at error message");
         
         // lets store our result
         let file = File::create("coin_flip_log_density_entropic_e.dat").unwrap();
         let buf = BufWriter::new(file);
         glued.write(buf).unwrap();
         
         // now, lets compare with the analytical results again
         // Again, calculate to base e
         let ln_prob: Vec<_> = glued.glued_log10_probability
             .iter()
             .map(|&val| val / std::f64::consts::LOG10_E)
             .collect();
         
         
         // lets write that in a file, so we can use gnuplot to plot the result
         let comp_file = File::create("coin_flip_compare_entr_e.dat").unwrap();
         let mut buf = BufWriter::new(comp_file);
         
         // lets also calculate the maximum difference between the two solutions
         let mut max_ln_dif = std::f64::NEG_INFINITY;
         let mut max_dif = std::f64::NEG_INFINITY;
         
         writeln!(buf, "#head_count Numeric_ln_prob Analytic_ln_prob ln_dif dif").unwrap();
         for (index, (numeric, analytic)) in ln_prob.iter().zip(ln_prob_true.iter()).enumerate()
         {
             let ln_dif = numeric - analytic;
             max_ln_dif = ln_dif.abs().max(max_ln_dif);
             let dif = numeric.exp() - analytic.exp();
             max_dif = dif.abs().max(max_dif);
             writeln!(buf, "{} {:e} {:e} {:e} {:e}", index, numeric, analytic, ln_dif, dif).unwrap();
         }
         
         println!("Max_ln_dif = {}", max_ln_dif);
         println!("Max_dif = {}", max_dif);
         
         // in this case, the max difference of the natural logarithms 
         //of the probabilities is smaller than 0.026
         assert!(max_ln_dif < 0.026);
         // and the max absolut difference is smaller than 0.0007
         assert!(max_dif < 0.0007);
         
         // That would be the final result for our probability 
         // density than. As you can see, it is very very 
         // close to the analytical result.
         
         // Now, lets see, how our heatmap looks:
         let mut settings = GnuplotSettings::new();
         settings.x_label("#Heads")
             .y_label("Max heads in row")
             .terminal(GnuplotTerminal::PDF("heatmap_coin_flips".to_owned()));
         
         // lets normalize coloumwise
         // This way, the scale of our heatmap tells us the conditional probability
         // P(Number of heads in a rom | number of heads) of how many heads in a row were
         // part of that sequence given the total number of heads that occurred in the sequence
         let heatmap = heatmap.heatmap_normalized_columns();
         
         // now create gnuplot file
         let file = File::create("coin_heatmap_e.gp").unwrap();
         let buf = BufWriter::new(file);
         heatmap.gnuplot(
             buf,
             settings
         ).unwrap();
    }
}*/